Необратимость процессов и второй закон термодинамики. Необратимость процессов в природе

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Термодинамический подход не позволяет вскрыть внутреннюю природу необратимости реальных процессов в макроскопических системах. Опираясь на эксперимент, он только фиксирует факт необратимости (второй закон термодинамики). Молекулярно-кинетический подход позволяет проанализировать причины такой необратимости реальных процессов и определенной направленности энергетических превращений в природе.

Гипотетический вечный двигатель. Рассмотрим с точки зрения молекулярно-кинетической теории модель гипотетического «вечного» двигателя второго рода, изображенную на рис. 79. Предположим, что этот вечный двигатель работает следующим образом: газ самопроизвольно собирается в левой половине цилиндра, после чего поршень подвигают вплотную к газу. При таком перемещении внешние силы работы не совершают, так как собравшийся в левой половине газ не оказывает давления на поршень. Затем подводим к газу теплоту и заставляем его изотермически расширяться до

прежнего объема. При этом газ совершает работу за счет подводимой теплоты. После того как поршень перейдет в крайнее правое положение, будем ждать, пока газ снова не соберется самопроизвольно в левой половине сосуда, и затем повторяем все снова. В результате получилась периодически действующая машина, которая совершает работу только за счет получения теплоты от окружающей среды.

Рис. 79. Один из вариантов «вечного» двигателя второго рода

Молекулярно-кинетическая теория позволяет сразу объяснить, почему такое устройство не будет работать. Как мы видели, вероятность того, что газ, содержащий большое число молекул, хотя бы один раз самопроизвольно соберется в одной половине сосуда, ничтожно мала. И уж совершенно невозможно себе представить, чтобы это могло повторяться раз за разом по мере работы машины.

О необратимых процессах. Теперь можно указать, какой смысл вкладывается в понятие необратимого процесса: процесс является необратимым, если обратный процесс в действительности почти никогда не происходит. Строгого запрета для такого процесса нет - он просто слишком маловероятен, чтобы его можно было наблюдать на опыте. Так, рассмотренный пример вечного двигателя второго рода основывался на предположении о возможности самопроизвольного сосредоточения газа в одной половине сосуда. Такой процесс является обратным для процесса расширения газа в пустоту. Расширение газа в пустоту представляет собой один из наиболее ярких примеров необратимых процессов - обратный процесс в макроскопической системе никогда не наблюдался.

Таким образом, с точки зрения представлений статистической механики второй закон термодинамики утверждает, что в природе в макроскопических системах процессы развиваются в таком направлении, когда менее вероятные состояния системы заменяются на более вероятные. Такая интерпретация второго закона термодинамики была впервые предложена Больцманом.

При рассмотрении флуктуаций плотности идеального газа было выяснено, что состояния газа, при которых распределение молекул близко к равномерному, встречаются гораздо чаще, чем далекие от равновесия состояния с сильно неравномерным распределением молекул. Другими словами, состояния с неравномерным распределением молекул по объему, при которых число молекул в правой и левой половинах сосуда сильно различаются, имеют гораздо меньшую вероятность, чем состояния с почти равномерным распределением, близким к равновесному. Итак, необратимый процесс приближения

к равновесию - это переход к наиболее вероятному макроскопическому состоянию.

Необратимые процессы и разрушение порядка. Сказанное выше о природе необратимости реальных процессов можно сформулировать и несколько иначе. Можно сказать, что необратимый переход к равновесию - это переход от в сильной степени упорядоченных неравновесных состояний к менее упорядоченным, хаотическим состояниям.

При расширении газа в пустоту начальное состояние, когда газ занимает часть предоставленного ему объема, является в значительной мере упорядоченным, в то время как конечное состояние теплового равновесия, когда газ равномерно распределен по всему объему сосуда, является совершенно неупорядоченным.

Другой пример - направленный пучок молекул газа, входящий в откачанный сосуд. Установление равновесного максвелловского распределения молекул по скоростям представляет собой необратимый процесс перехода системы из упорядоченного состояния, когда все молекулы имеют почти одинаковые по модулю и направлению скорости, в конечное состояние, характеризующееся полной хаотичностью движения молекул.

С этой точки зрения легко понять устанавливаемую вторым законом термодинамики определенную направленность энергетических превращений в замкнутой системе. Когда тело получает некоторое количество теплоты за счет совершения механической работы, то это означает необратимое превращение кинетической энергии упорядоченного макроскопического движения в кинетическую энергию хаотического движения молекул. Превращение теплоты в работу, наоборот, означает превращение энергии беспорядочного движения молекул в энергию упорядоченного движения макроскопического тела - такой самопроизвольный переход, как мы видели, в принципе возможен, но исключительно маловероятен.

Флуктуации как отклонения от второго закона термодинамики. Необратимый характер процессов перехода в состояние теплового равновесия, устанавливаемый вторым законом термодинамики, справедлив только для больших макроскопических систем. С термодинамической точки зрения изолированная система, пришедшая в состояние теплового равновесия, не может самопроизвольно выйти из этого состояния. Однако статистическая механика допускает существование флуктуаций, которые фактически представляют собой самопроизвольные отклонения системы от равновесия.

Как уже отмечалось, чем больше частиц в системе, тем меньше относительная величина флуктуаций любого макроскопического параметра, и для достаточно большой системы флуктуациями вообще можно пренебречь. Именно поэтому для таких систем справедлив второй закон термодинамики, в котором утверждается возрастание

энтропии в замкнутых системах. При статистическом определении энтропии второй закон утрачивает абсолютный характер и превращается в статистический закон: за каким-либо заданным состоянием замкнутой системы будут следовать состояния, более вероятные если не с необходимостью, то в подавляющем большинстве случаев.

В системах с небольшим числом частиц относительная величина флуктуаций велика, т. е. самопроизвольные отклонения какой-либо величины от ее среднего значения могут быть сравнимы с самим средним значением. Такая система часто самопроизвольно выходит из состояния равновесия, и второй закон термодинамики здесь неприменим. Характерный пример нарушения второго закона термодинамики в достаточно малых системах - броуновское движение, при котором взвешенная в жидкости макроскопическая частица получает кинетическую энергию от молекул окружающей среды, хотя температура среды не выше, чем температура самой броуновской частицы.

Как статистическая механика объясняет необратимость реальных тепловых процессов?

Приведите примеры явлений, в которых наблюдается самопроизвольный выход системы из состояния термодинамического равновесия.

Почему упорядоченные состояния характеризуются меньшей вероятностью по сравнению с неупорядоченными?

Статистическая гипотеза. Неизбежность тепловых процессов в природе приводит к тому, что статистическая механика систем многих частиц не исчерпывается законами обычной механики (хотя и опирается на них), а требует обязательного введения дополнительной статистической гипотезы в той или иной форме, например в виде предположения о равной вероятности различных микросостояний замкнутой системы.

Но в тех случаях, когда тепловые процессы оказываются несущественными, определенную информацию о свойствах термодинамической системы можно получить, опираясь только на механические представления. Тепловые процессы практически отсутствуют в условиях тепловой изоляции при наличии механического равновесия. В этих случаях протекающие явления обратимы и можно использовать модель адиабатического процесса.

Покажем, например, как можно получить уравнение адиабаты для одноатомного идеального газа, основываясь на существовании адиабатических инвариантов в механических системах. Напомним (см. кн. 1), что адиабатическим инвариантом называется характеризующая механическую систему величина, сохраняющаяся при медленном изменении внешних параметров. В частности, для шарика, упруго отражающегося от двух параллельных стенок, которые медленно сближаются или раздвигаются, адиабатическим инвариантом является произведение расстояния между стенками на модуль скорости шарика.

В механической модели идеального газа как совокупности одноатомных молекул, упруго отражающихся от стенок сферического сосуда, адиабатическим инвариантом при медленном изменении объема V сосуда будет произведение характерного линейного размера (радиуса) сосуда на модуль скорости молекулы. В отсутствие теплообмена такая механическая модель адекватно описывает реальный адиабатический процесс сжатия или расширения. При этом сохраняет свой смысл и указанный адиабатический инвариант: Поскольку радиус пропорционален а модуль скорости пропорционален то

Легко видеть, что это совпадает с полученным выше уравнением адиабаты в переменных Т и V для одноатомного идеального газа, поскольку в этом случае

При каких условиях к системам из большого числа частиц применимы чисто механические представления, не опирающиеся на статистическую гипотезу?

Получите уравнение адиабаты идеального газа, рассматривая сосуд цилиндрической формы, объем которого изменяется при медленном перемещении поршня.

Закон сохранения энергии утверждает, что количество энергии при любых ее превращениях остается неизменным. Но он ничего не говорит о том, какие энергетические превращения возможны. Между тем многие процессы, вполне допустимые с точки зрения закона сохранения энергии, никогда не протекают в действительности.

Примеры необратимых процессов. Нагретые тела постепенно остывают, передавая свою энергию более холодным окружающим телам. Обратный процесс передачи теплоты от холодного

тела к горячему не противоречит закону сохранения энергии, но такой процесс никогда не наблюдался.

Другой пример. Колебания маятника, выведенного из положения равновесия, затухают (рис. 49; 1, 2, 3, 4 - последовательные положения маятника при максимальных отклонениях от положения равновесия). За счет работы сил трения механическая энергия убывает, а температура маятника и окружающего воздуха (а значит, и их внутренняя энергия) слегка повышается. Энергетически допустим и обратный процесс, когда амплитуда колебаний маятника увеличивается за счет охлаждения самого маятника и окружающей среды. Но такой процесс никогда не наблюдался. Механическая энергия самопроизвольно переходит во внутреннюю, но не наоборот. При этом упорядоченное движение тела как целого превращается в неупорядоченное тепловое движение слагающих его молекул.

Общее заключение о необратимости процессов в природе. Переход теплоты от горячего тела к холодному и механической энергии во внутреннюю - это примеры наиболее типичных необратимых процессов. Число подобных примеров можно увеличить практически неограниченно. Все они говорят о том, что процессы в природе имеют определенную направленность, никак не отраженную в первом законе термодинамики. Все макроскопические процессы в природе протекают только в одном определенном направлении. В обратном направлении они самопроизвольно протекать не могут. Все процессы в природе необратимы, и самые трагические из них - старение и смерть организмов.

Точная формулировка понятия необратимого процесса. Для правильного понимания существа необратимости процессов необходимо сделать следующее уточнение. Необратимым называется такой процесс, обратный которому может протекать только как одно из звеньев более сложного процесса. Так, можно вновь увеличить размах колебаний маятника, подтолкнув его рукой. Но это увеличение возникает не само собой, а становится возможным в результате более сложного процесса, включающего движение руки.

Можно в принципе перевести теплоту от холодного тела к горячему. Но для этого нужна холодильная установка, потребляющая энергию.

Кино «наоборот». Яркой иллюстрацией необратимости явлений в природе служит просмотр кинофильма в обратном направлении. Например, прыжок в воду будет при этом выглядеть следующим образом. Спокойная вода в бассейне начинает бурлить, появляются ноги, стремительно движущиеся вверх, а затем

и весь ныряльщик. Поверхность воды быстро успокаивается. Постепенно скорость ныряльщика уменьшается, и вот уже он спокойно стоит на вышке. То, что мы видим на экране, могло бы происходить в действительности, если бы процессы можно было обратить. «Нелепость» происходящего проистекает из того, что мы привыкли к определенной направленности процессов и не сомневаемся в невозможности их обратного течения. А ведь такой процесс, как вознесение ныряльщика на вышку из воды, не противоречит ни закону сохранения энергии, ни законам механики, ни вообще каким-либо законам, кроме второго закона термодинамики.

Второй закон термодинамики. Второй закон термодинамики указывает направление возможных энергетических превращений и тем самым выражает необратимость процессов в природе. Он был установлен путем непосредственного обобщения опытных фактов.

Есть несколько формулировок второго закона, которые, несмотря на внешнее различие, выражают, в сущности, одно и то же и поэтому равноценны.

Немецкий ученый Р. Клаузиус сформулировал этот закон так: невозможно перевести тепло от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или в окружающих телах.

Здесь констатируется опытный факт определенной направленности теплопередачи: теплота сама собой переходит всегда от горячих тел к холодным. Правда, в холодильных установках осуществляется теплопередача от холодного тела к более теплому, но эта передача связана с «другими изменениями в окружающих телах»: охлаждение достигается за счет работы.

Важность этого закона состоит в том, что из него можно вывести заключение о необратимости не только процесса теплопередачи, но и других процессов в природе. Если бы теплота в каких-либо случаях могла самопроизвольно передаваться от холодных тел к горячим, то это позволило бы сделать обратимыми и другие процессы. В частности, позволило бы создать двигатели, полностью превращающие внутреннюю энергию в механическую.

Энтропия . Физический смысл энтропии. Энтропия при обратимых и необратимых процессах в замкнутой системе. Второе начало термодинамики и превращение теплоты в работу.

Первый закон термодинамики – закон сохранения энергии для тепловых процессов – устанавливает связь между количеством теплоты Q , полученной системой, изменением ΔU ее внутренней энергии и работой A , совершенной над внешними телами:

Q = ΔU + A .

Согласно этому закону, энергия не может быть создана или уничтожена; она передается от одной системы к другой и превращается из одной формы в другую. Процессы, нарушающие первый закон термодинамики, никогда не наблюдались.

Первый закон термодинамики не устанавливает направления тепловых процессов. Однако, как показывает опыт, многие тепловые процессы могут протекать только в одном направлении. Такие процессы называются необратимыми . Например, при тепловом контакте двух тел с разными температурами тепловой поток всегда направлен от более теплого тела к более холодному. Никогда не наблюдается самопроизвольный процесс передачи тепла от тела с низкой температурой к телу с более высокой температурой. Следовательно, процесс теплообмена при конечной разности температур является необратимым.

Обратимыми процессами называют процессы перехода системы из одного равновесного состояния в другое, которые можно провести в обратном направлении через ту же последовательность промежуточных равновесных состояний. При этом сама система и окружающие тела возвращаются к исходному состоянию.

Процессы, в ходе которых система все время остается в состоянии равновесия, называются квазистатическими . Все квазистатические процессы обратимы. Все обратимые процессы являются квазистатическими.

Если рабочее тело тепловой машины приводится в контакт с тепловым резервуаром, температура которого в процессе теплообмена остается неизменной, то единственным обратимым процессом будет изотермический квазистатический процесс, протекающий при бесконечно малой разнице температур рабочего тела и резервуара. При наличии двух тепловых резервуаров с разными температурами обратимым путем можно провести процессы на двух изотермических участках. Поскольку адиабатический процесс также можно проводить в обоих направлениях (адиабатическое сжатие и адиабатическое расширение), то круговой процесс, состоящий из двух изотерм и двух адиабат (цикл Карно) является единственным обратимым круговым процессом, при котором рабочее тело приводится в тепловой контакт только с двумя тепловыми резервуарами. Все остальные круговые процессы, проводимые с двумя тепловыми резервуарами, необратимы.

Необратимыми являются процессы превращения механической работы во внутреннюю энергию тела из-за наличия трения, процессы диффузии в газах и жидкостях, процессы перемешивания газа при наличии начальной разности давлений и т. д. Все реальные процессы необратимы, но они могут сколь угодно близко приближаться к обратимым процессам. Обратимые процессы являются идеализацией реальных процессов.

Первый закон термодинамики не может отличить обратимые процессы от необратимых. Он просто требует от термодинамического процесса определенного энергетического баланса и ничего не говорит о том, возможен такой процесс или нет. Направление самопроизвольно протекающих процессов устанавливает второй закон термодинамики. Он может быть сформулирован в виде запрета на определенные виды термодинамических процессов.

Английский физик У. Кельвин дал в 1851 г. следующую формулировку второго закона:

В циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от единственного теплового резервуара.

Гипотетическую тепловую машину, в которой мог бы происходить такой процесс, называют «вечным двигателем второго рода ». В земных условиях такая машина могла бы отбирать тепловую энергию , например, у Мирового океана и полностью превращать ее в работу. Масса воды в Мировом океане составляет примерно 1021 кг, и при ее охлаждении на один градус выделилось бы огромное количество энергии (≈ 1024 Дж), эквивалентное полному сжиганию 1017 кг угля. Ежегодно вырабатываемая на Земле энергия приблизительно в 104 раз меньше. Поэтому «вечный двигатель второго рода» был бы для человечества не менее привлекателен, чем «вечный двигатель первого рода», запрещенный первым законом термодинамики.

Немецкий физик Р. Клаузиус дал другую формулировку второго закона термодинамики :

Невозможен процесс, единственным результатом которого была бы передача энергии путем теплообмена от тела с низкой температурой к телу с более высокой температурой.

Следует отметить, что обе формулировки второго закона термодинамики эквивалентны . Если допустить, например, что тепло может самопроизвольно (т. е. без затраты внешней работы) переходить при теплообмене от холодного тела к горячему, то можно прийти к выводу о возможности создания «вечного двигателя второго рода». Действительно, пусть реальная тепловая машина получает от нагревателя количество теплоты Q 1 и отдает холодильнику количество теплоты Q 2. При этом совершается работа A = Q 1 – |Q 2|. Если бы количество теплоты |Q 2| самопроизвольно переходило от холодильника к нагревателю, то конечным результатом работы реальной тепловой машины и «идеальной холодильной машины» было бы превращение в работу количества теплоты Q 1 – |Q 2|, полученного от нагревателя без какого-либо изменения в холодильнике. Таким образом, комбинация реальной тепловой машины и «идеальной холодильной машины» равноценна «вечному двигателю второго рода». Точно также можно показать, что комбинация «реальной холодильной машины» и «вечного двигателя второго рода» равноценна «идеальной холодильной машине».

Второй закон термодинамики связан непосредственно с необратимостью реальных тепловых процессов. Энергия теплового движения молекул качественно отличается от всех других видов энергии – механической, электрической, химической и т. д. Энергия любого вида, кроме энергии теплового движения молекул, может полностью превратиться в любой другой вид энергии, в том числе и в энергию теплового движения. Последняя может испытать превращение в любой другой вид энергии лишь частично . Поэтому любой физический процесс, в котором происходит превращение какого-либо вида энергии в энергию теплового движения молекул, является необратимым процессом, т. е. он не может быть осуществлен полностью в обратном направлении.

Общим свойством всех необратимых процессов является то, что они протекают в термодинамически неравновесной системе и в результате этих процессов замкнутая система приближается к состоянию термодинамического равновесия .

Необратимым называется физический процесс , который может самопроизвольно протекать только в одном определенном направлении.

В обратном направлении такие процессы могут протекать только как одно из звеньев более сложного процесса.

Необратимыми являются практически все процессы, происходящие в природе. Это связано с тем, что в любом реальном процессе часть энергии рассеивается за счет излучения, трения и т. д. Например, тепло, как известно, всегда переходит от более горячего тела к более холодному — это наиболее типичный пример необратимого процесса (хотя обратный переход не противоречит закону сохранения энергии).

Также висящий на легкой нити шарик (маятник) никогда самопроизвольно не увеличит ам-плитуду своих колебаний, наоборот, приведенный однажды в движение посторонней силой, он обязательно, в конце концов, остановится в результате сопротивления воздуха и трения нити о подвес. Таким образом, сообщенная маятнику механическая энергия переходит во внутреннюю энергию хаотического движения молекул (воздуха, материала подвеса).

Математически необратимость механических процессов выражается в том, что уравнение движения макроскопических тел изменяется с изменением знака времени: они не инвариантны при замене t на - t . При этом ускорение и силы, зависящие от расстояний, не изменяют свои знаки. Знак при замене t на - t меняется у скорости . Соответственно знак меняет сила , зависящая от скорости, — сила трения . Именно поэтому при совершении работы силами трения кинетическая энергия тела необратимо переходит во внутреннюю.

Направленность процессов в природе указывает второй закон термодинамики.

Второй закон термодинамики.

Второй закон термодинамики — один из основных законов термодинамики , устанавливающий необратимость реальных термодинамических процессов.

Второй закон термодинамики был сформулирован как закон природы Н. Л. С. Карно в 1824 г., затем У. Томсоном (Кельвином) в 1841 г. и Р. Клаузиусом в 1850 г. Формулировки закона различны, но эквивалентны.

Немецкий ученый Р. Клаузиус формулировал закон так: невозможно перевести теплоту от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или окружающих телах. Это означает, что теплота не может самопроизвольно пере-ходить от более холодного тела к более горячему (принцип Клаузиуса ).

Согласно формулировке Томсона процесс, при котором работа переходит в тепло без каких-либо иных изменений состояния системы, необратим, т. е. невозможно преобразовать в работу все тепло, взятое от тела, не производя никаких других изменений состояния системы (принцип Томсона ).

Обратимым называется процесс, который отвечает следующим условиям:

  1. его можно провести в двух противоположных направлениях;
  2. в каждом из этих случаев система и окружающие ее тела проходят через одни и те же промежуточные состояния;
  3. после проведения прямого и обратного процессов система и окружающие ее тела возвращаются к исходному состоянию.

Всякий процесс, не удовлетворяющий хотя бы одному из этих условий, является необратимым .

Так, можно доказать, что абсолютно упругий шарик, падая в вакууме на абсолютно упругую плиту, вернется после отражения в исходную точку, пройдя в обратном направлении все те промежуточные состояния, которые он проходил при падении.

Но в природе нет строго консервативных систем, в любой реальной системе действуют силы трения. Поэтому все реальные процессы в природе необратимы.

Реальные тепловые процессы также необратимы .

  1. При диффузии выравнивание концентраций происходит самопроизвольно. Обратный же процесс сам по себе никогда не пойдет: никогда самопроизвольно смесь газов, например, не разделится на составляющие ее компоненты. Следовательно, диффузия - необратимый процесс.
  2. Теплообмен, как показывает опыт, также является односторонне направленным процессом. В результате теплообмена энергия передается сама по себе всегда от тела с более высокой температурой к телу с более низкой температурой. Обратный процесс передачи теплоты от холодного тела к горячему сам по себе никогда не происходит.
  3. Необратимым является также процесс превращения механической энергии во внутреннюю при неупругом ударе или при трении.

Между тем из первого закона термодинамики направленность и тем самым необратимость тепловых процессов не вытекает. Первый закон термодинамики требует лишь, чтобы количество теплоты, отданное одним телом, в точности равнялось количеству теплоты, которое получит другое. А вот вопрос о том, от какого тела, от горячего к холодному или наоборот, перейдет энергия, остается открытым.

Направленность реальных тепловых процессов определяется вторым законом термодинамики, который был установлен непосредственным обобщением опытных фактов. Это постулат. Немецкий ученый Р. Клаузиус дал такую формулировку второго закона термодинамики : невозможно перевести тепло от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или окружающих телах .

Из второго закона термодинамики вытекает невозможность создания вечного двигателя второго рода, т.е. двигателя, который бы совершал работу за счет охлаждения какого-либо одного тела.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 161-162.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Гречка с фаршем рецепт на сковороде Гречка с фаршем и овощами на сковороде Гречка с фаршем рецепт на сковороде Гречка с фаршем и овощами на сковороде Профессия Проходчик.  Кто такой Проходчик. Описание профессии. Вакансии проходчика для работы вахтой Проходчик профессия Профессия Проходчик. Кто такой Проходчик. Описание профессии. Вакансии проходчика для работы вахтой Проходчик профессия «Из тьмы веков» Идрис Базоркин Из тьмы веков читать «Из тьмы веков» Идрис Базоркин Из тьмы веков читать