Функция плотности равномерного распределения. Законы распределения непрерывных случайных величин

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

В качестве примера непрерывной случайной величины рассмотрим случайную величину X, равномерно распределенную на интервале (a; b). Говорят, что случайная величина X равномерно распределена на промежутке (a; b), если ее плотность распределения непостоянна на этом промежутке:

Из условия нормировки определим значение константы c . Площадь под кривой плотности распределения должна быть равна единице, но в нашем случае - это площадь прямоугольника с основанием (b - α) и высотой c (рис. 1).

Рис. 1 Плотность равномерного распределения
Отсюда находим значение постоянной c:

Итак, плотность равномерно распределенной случайной величины равна

Найдем теперь функцию распределения по формуле:
1) для
2) для
3) для 0+1+0=1.
Таким образом,

Функция распределения непрерывна и не убывает (рис. 2).

Рис. 2 Функция распределения равномерно распределенной случайной величины

Найдем математическое ожидание равномерно распределенной случайной величины по формуле:

Дисперсия равномерного распределения рассчитывается по формуле и равна

Пример №1 . Цена деления шкалы измерительного прибора равна 0.2 . Показания прибора округляют до ближайшего целого деления. Найти вероятность того, что при отсчете будет сделана ошибка: а) меньшая 0.04 ; б) большая 0.02
Решение. Ошибка округления есть случайная величина, равномерно распределенная на промежутке между соседними целыми делениями. Рассмотрим в качестве такого деления интервал (0; 0,2) (рис. а). Округление может проводиться как в сторону левой границы - 0, так и в сторону правой - 0,2, значит, ошибка, менее либо равная 0,04, может быть сделана два раза, что необходимо учесть при подсчете вероятности:



P = 0,2 + 0,2 = 0,4

Для второго случая величина ошибки может превышать 0,02 также с обеих границ деления, то есть она может быть либо больше 0,02, либо меньше 0,18.


Тогда вероятность появления такой ошибки:

Пример №2 . Предполагалось, что о стабильности экономической обстановки в стране (отсутствии войн, стихийных бедствий и т. д.) за последние 50 лет можно судить по характеру распределения населения по возрасту: при спокойной обстановке оно должно быть равномерным . В результате проведенного исследования, для одной из стран были получены следующие данные.

Имеются ли основания полагать, что в стране была нестабильная обстановка?

Решение проводим с помощью калькулятора Проверка гипотез . Таблица для расчета показателей.

Группы Середина интервала, x i Кол-во, f i x i * f i Накопленная частота, S |x - x ср |*f (x - x ср) 2 *f Частота, f i /n
0 - 10 5 0.14 0.7 0.14 5.32 202.16 0.14
10 - 20 15 0.09 1.35 0.23 2.52 70.56 0.09
20 - 30 25 0.1 2.5 0.33 1.8 32.4 0.1
30 - 40 35 0.08 2.8 0.41 0.64 5.12 0.08
40 - 50 45 0.16 7.2 0.57 0.32 0.64 0.16
50 - 60 55 0.13 7.15 0.7 1.56 18.72 0.13
60 - 70 65 0.12 7.8 0.82 2.64 58.08 0.12
70 - 80 75 0.18 13.5 1 5.76 184.32 0.18
1 43 20.56 572 1
Показатели центра распределения .
Средняя взвешенная


Показатели вариации .
Абсолютные показатели вариации .
Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.
R = X max - X min
R = 70 - 0 = 70
Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).


Среднее квадратическое отклонение .

Каждое значение ряда отличается от среднего значения 43 не более, чем на 23.92
Проверка гипотез о виде распределения .
4. Проверка гипотезы о равномерном распределении генеральной совокупности.
Для того чтобы проверить гипотезу о равномерном распределении X,т.е. по закону: f(x) = 1/(b-a) в интервале (a,b)
надо:
1. Оценить параметры a и b - концы интервала, в котором наблюдались возможные значения X, по формулам (через знак * обозначены оценки параметров):

2. Найти плотность вероятности предполагаемого распределения f(x) = 1/(b * - a *)
3. Найти теоретические частоты:
n 1 = nP 1 = n = n*1/(b * - a *)*(x 1 - a *)
n 2 = n 3 = ... = n s-1 = n*1/(b * - a *)*(x i - x i-1)
n s = n*1/(b * - a *)*(b * - x s-1)
4. Сравнить эмпирические и теоретические частоты с помощью критерия Пирсона, приняв число степеней свободы k = s-3, где s - число первоначальных интервалов выборки; если же было произведено объединение малочисленных частот, следовательно, и самих интервалов, то s - число интервалов, оставшихся после объединения.

Решение:
1. Найдем оценки параметров a * и b * равномерного распределения по формулам:


2. Найдем плотность предполагаемого равномерного распределения:
f(x) = 1/(b * - a *) = 1/(84.42 - 1.58) = 0.0121
3. Найдем теоретические частоты:
n 1 = n*f(x)(x 1 - a *) = 1 * 0.0121(10-1.58) = 0.1
n 8 = n*f(x)(b * - x 7) = 1 * 0.0121(84.42-70) = 0.17
Остальные n s будут равны:
n s = n*f(x)(x i - x i-1)

i n i n * i n i - n * i (n i - n* i) 2 (n i - n * i) 2 /n * i
1 0.14 0.1 0.0383 0.00147 0.0144
2 0.09 0.12 -0.0307 0.000943 0.00781
3 0.1 0.12 -0.0207 0.000429 0.00355
4 0.08 0.12 -0.0407 0.00166 0.0137
5 0.16 0.12 0.0393 0.00154 0.0128
6 0.13 0.12 0.0093 8.6E-5 0.000716
7 0.12 0.12 -0.000701 0 4.0E-6
8 0.18 0.17 0.00589 3.5E-5 0.000199
Итого 1 0.0532
Определим границу критической области. Так как статистика Пирсона измеряет разницу между эмпирическим и теоретическим распределениями, то чем больше ее наблюдаемое значение K набл, тем сильнее довод против основной гипотезы.
Поэтому критическая область для этой статистики всегда правосторонняя: , если на этом отрезке плотность распределения вероятности случайной величины постоянна, т. е. если дифференциальная функция распределения f (х) имеет следующий вид:

Иногда это распределение называют законом равномерной плотности . Про величину, которая имеет равномерное распределение на некотором отрезке, будем говорить, что она распределена равномерно на этом отрезке.

Найдем значение постоянной с. Так как площадь, ограниченная кривой распределения и осью Ох, равна 1, то

откуда с =1/(b - a ).

Теперь функцию f (x ) можно представить в виде

Построим функцию распределения F (x ), для чего найдем выражение F (x ) на интервале [ a , b ]:


Графики функций f (x ) и F (x ) имеют вид:


Найдем числовые характеристики.

Используя формулу для вычисления математического ожидания НСВ, имеем:

Таким образом, математическое ожидание случайной вели­чины, равномерно распределенной на отрезке [ a , b ] совпадает с серединой этого отрезка.

Найдем дисперсию равномерно распределенной случайной величины:

откуда сразу же следует, что среднее квадратическое отклонение:

Найдем теперь вероятность попадания значения случайной величины, имеющей равномерное распределение, на интервал (a , b ) , принадлежащий целиком отрезку [ a , b ]:


Геометрически эта вероятность представляетсобойплощадь заштрихованного прямоугольника. Числа а и b называются параметрами распределения и однозначно определяют равномерное распределение.

Пример1. Автобусы некоторого маршрута идут строго по расписанию. Интервал движения 5 минут. Найти вероятность того, что пассажир, подошедший к остановке. Будет ожидать очередной автобус менее 3 минут.

Решение:

СВ- время ожидания автобуса имеет равномерное распределение. Тогда искомая вероятность будет равна:

Пример2. Ребро куба х измерено приближенно. Причем

Рассматривая ребро куба как случайную величину, распределенную равномерно в интервале (a , b ) , найти математическое ожидание и дисперсию объема куба.

Решение:

Объем куба- случайная величина, определяемая выражением У= Х 3 . Тогда математическое ожидание равно:

Дисперсия:

Онлайн сервис:

Как было сказано ранее, примерами распределений вероятностей непрерывной случайной величины Х являются:

  • равномерное распределение вероятностей непрерывной случайной величины;
  • показательное распределение вероятностей непрерывной случайной величины;
  • нормальное распределение вероятностей непрерывной случайной величины.

Дадим понятие равномерного и показательного законов распределения, формулы вероятности и числовые характеристики рассматриваемых функций.

Показатель Раномерный закон распределения Показательный закон распределения
Определение Равномерным называется распределение вероятностей непрерывной случайной величины X, плотность которого сохраняет постоянное значение на отрезке и имеет вид Показательным (экспоненциальным) называется распределение вероятностей непрерывной случайной величины X, которое описывается плотностью, имеющей вид

где λ – постоянная положительная величина
Функция распределения
Вероятность попадания в интервал
Математическое ожидание
Дисперсия
Среднее квадратическое отклонение

Примеры решения задач по теме «Равномерный и показательный законы распределения»

Задача 1.

Автобусы идут строго по расписанию. Интервал движения 7 мин. Найти: а) вероятность того, что пассажир, подошедший к остановке, будет ожидать очередной автобус менее двух минут; б) вероятность того, что пассажир, подошедший к остановке, будет ожидать очередной автобус не менее трех минут; в) математическое ожидание и среднее квадратическое отклонение случайной величины X – времени ожидания пассажира.

Решение. 1. По условию задачи непрерывная случайная величина X={время ожидания пассажира} равномерно распределена между приходами двух автобусов. Длина интервала распределения случайной величины Х равна b-a=7, где a=0, b=7.

2. Время ожидания будет менее двух минут, если случайная величина X попадает в интервал (5;7). Вероятность попадания в заданный интервал найдем по формуле: Р(х 1 <Х<х 2)=(х 2 -х 1)/(b-a) .
Р(5 < Х < 7) = (7-5)/(7-0) = 2/7 ≈ 0,286.

3. Время ожидания будет не менее трех минут (т.е. от трех до семи мин.), если случайная величина Х попадает в интервал (0;4). Вероятность попадания в заданный интервал найдем по формуле: Р(х 1 <Х<х 2)=(х 2 -х 1)/(b-a) .
Р(0 < Х < 4) = (4-0)/(7-0) = 4/7 ≈ 0,571.

4. Математическое ожидание непрерывной, равномерно распределенной случайной величины X – времени ожидания пассажира, найдем по формуле: М(Х)=(a+b)/2 . М(Х) = (0+7)/2 = 7/2 = 3,5.

5. Среднее квадратическое отклонение непрерывной, равномерно распределенной случайной величины X – времени ожидания пассажира, найдем по формуле: σ(X)=√D=(b-a)/2√3 . σ(X)=(7-0)/2√3=7/2√3≈2,02.

Задача 2.

Показательное распределение задано при x ≥ 0 плотностью f(x) = 5e – 5x. Требуется: а) записать выражение для функции распределения; б) найти вероятность того, что в результате испытания X попадает в интервал (1;4); в) найти вероятность того, что в результате испытания X ≥ 2 ; г) вычислить M(X), D(X), σ(X).

Решение. 1. Поскольку по условию задано показательное распределение , то из формулы плотности распределения вероятностей случайной величины X получаем λ = 5. Тогда функция распределения будет иметь вид:

2. Вероятность того, что в результате испытания X попадает в интервал (1;4) будем находить по формуле:
P(a < X < b) = e −λa − e −λb .
P(1 < X < 4) = e −5*1 − e −5*4 = e −5 − e −20 .

3. Вероятность того, что в результате испытания X ≥ 2 будем находить по формуле: P(a < X < b) = e −λa − e −λb при a=2, b=∞.
Р(Х≥2) = P(1< X < 4) = e −λ*2 − e −λ*∞ = e −2λ − e −∞ = e −2λ - 0 = e −10 (т.к. предел e −х при х стремящемся к ∞ равен нулю).

4. Находим для показательного распределения:

  • математическое ожидание по формуле M(X) =1/λ = 1/5 = 0,2;
  • дисперсию по формуле D(X) = 1/ λ 2 = 1/25 = 0,04;
  • среднее квадратическое отклонение по формуле σ(Х) = 1/λ = 1/5 = 1,2.
Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Гречка с фаршем рецепт на сковороде Гречка с фаршем и овощами на сковороде Гречка с фаршем рецепт на сковороде Гречка с фаршем и овощами на сковороде Профессия Проходчик.  Кто такой Проходчик. Описание профессии. Вакансии проходчика для работы вахтой Проходчик профессия Профессия Проходчик. Кто такой Проходчик. Описание профессии. Вакансии проходчика для работы вахтой Проходчик профессия «Из тьмы веков» Идрис Базоркин Из тьмы веков читать «Из тьмы веков» Идрис Базоркин Из тьмы веков читать