График функции y равно kx. Линейная функция и ее график

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Функция вида y = kx + b называется линейной. Графиком линейной функции является прямая. Для построения прямой необходимо и достаточно две точки.

Функция вида y = kx

Функция вида y = kx называется прямой пропорциональностью.

Графиком является прямая, проходящая через начало координат и располагающаяся в 1 и 3 четвертях, если k > 0, во 2 и 4 четвертях, если k < 0.

k - называется коэффициентом пропорциональности и определяет угол наклона прямой к положительному направлению оси ОХ. k = tg б

Прямая у = х является биссектрисой 1 и 3 координатных углов, а прямая у = х является биссектрисой 1 и 4 координатных углов.

Пример. Построить графики функций у = 2х, у = х, у = 2х.

Функция прямая пропорциональная зависимость, графикам являются прямые.

Так как графики проходят через начало координат, то одна из точек имеет координаты (0; 0), поэтому можно взять еще одну точку.

у = х, у = 2х, у = 2х,

х = 1, у = 1; х = 1, у = 2; х = 1, у = 2.

Функция вида y = kx + b

Графиком функции является прямая, у = kx, смещенная параллельным переносом по оси У на b единиц, в сторону согласно знаку b.

Построение можно вести по двум точкам или параллельным смещением.

Пример. Построить график функции у = 3х 4.

Функция линейная, графиком является прямая.

Построение можно вести параллельным переносом прямой у = 3х на 2 единицы вниз по оси У.

Функция вида у = b

Графиком функции является прямая, параллельная оси Х, проходящая через точку с координатами (0; b).

Построить график функции у = 3.

Функция линейная, графиком является прямая, параллельная оси ОХ, проходящая через точку (0;3)

Уравнение прямой х = с

Прямая х = с не является функцией. Однако, графиком является прямая, параллельная оси О У и проходящая через точку с координатами (с; 0).

Линейной функцией называется функция вида y = kx + b , заданная на множестве всех действительных чисел. Здесь k – угловой коэффициент (действительное число), b свободный член (действительное число), x – независимая переменная.

В частном случае, если k = 0 , получим постоянную функцию y = b , график которой есть прямая, параллельная оси Ox, проходящая через точку с координатами (0; b) .

Если b = 0 , то получим функцию y = kx , которая является прямой пропорциональностью.

b длина отрезка , который отсекает прямая по оси Oy, считая от начала координат.

Геометрический смысл коэффициента k угол наклона прямой к положительному направлению оси Ox, считается против часовой стрелки.

Свойства линейной функции:

1) Область определения линейной функции есть вся вещественная ось;

2) Если k ≠ 0 , то область значений линейной функции есть вся вещественная ось. Если k = 0 , то область значений линейной функции состоит из числа b ;

3) Четность и нечетность линейной функции зависят от значений коэффициентов k и b .

a) b ≠ 0, k = 0, следовательно, y = b – четная;

b) b = 0, k ≠ 0, следовательно y = kx – нечетная;

c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;

d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.

4) Свойством периодичности линейная функция не обладает;

5) Точки пересечения с осями координат:

Ox: y = kx + b = 0, x = -b/k , следовательно (-b/k; 0) – точка пересечения с осью абсцисс.

Oy: y = 0k + b = b , следовательно (0; b) – точка пересечения с осью ординат.

Замечание.Если b = 0 и k = 0 , то функция y = 0 обращается в ноль при любом значении переменной х . Если b ≠ 0 и k = 0 , то функция y = b не обращается в ноль ни при каких значениях переменной х .

6) Промежутки знакопостоянства зависят от коэффициента k.

a) k > 0; kx + b > 0, kx > -b, x > -b/k.

y = kx + b – положительна при x из (-b/k; +∞) ,

y = kx + b – отрицательна при x из (-∞; -b/k) .

b) k < 0; kx + b < 0, kx < -b, x < -b/k.

y = kx + b – положительна при x из (-∞; -b/k) ,

y = kx + b – отрицательна при x из (-b/k; +∞) .

c) k = 0, b > 0; y = kx + b положительна на всей области определения,

k = 0, b < 0; y = kx + b отрицательна на всей области определения.

7) Промежутки монотонности линейной функции зависят от коэффициента k .

k > 0 , следовательно y = kx + b возрастает на всей области определения,

k < 0 , следовательно y = kx + b убывает на всей области определения.

8) Графиком линейной функции является прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b . Ниже приведена таблица, которая наглядно это иллюстрирует.

>>Математика: Линейная функция и ее график

Линейная функция и ее график


Алгоритм построения графика уравнения ах + by + с = 0, который мы сформулировали в § 28, при всей его четкости и определенности математикам не очень нравится. Обычно они выдвигают претензии к первым двум шагам алгоритма. Зачем, говорят они, дважды решать уравнение относительно переменной у: сначала ах1 + Ьу + с = О, затем ахг + Ьу + с = О? Не лучше ли сразу выразить у из уравнения ах + by + с = 0, тогда легче будет проводить вычисления (и, главное, быстрее)? Давайте проверим. Рассмотрим сначала уравнение 3x - 2у + 6 = 0 (см. пример 2 из § 28).

Придавая х конкретные значения, легко вычислить соответствующие значения у. Например, при х = 0 получаем у = 3; при х = -2 имеем у = 0; при х = 2 имеем у = 6; при х = 4 получаем: у = 9.

Видите, как легко и быстро найдены точки (0; 3), (- 2; 0), (2; 6) и (4; 9), которые были выделены в примере 2 из § 28.

Точно так же уравнение Ьх - 2у = 0 (см. пример 4 из § 28) можно было преобразовать к виду 2у =16 -3x . далее у = 2,5x; нетрудно найти точки (0; 0) и (2; 5), удовлетворяющие этому уравнению.

Наконец, уравнение 3x + 2у - 16 = 0 из того же примера можно преобразовать к виду 2y = 16 -3x и далее нетрудно найти точки (0; 0) и (2; 5), которые ему удовлетворяют.

Рассмотрим теперь указанные преобразования в общем виде.


Таким образом, линейное уравнение (1) с двумя переменными х и у всегда можно преобразовать к виду
y = kx + m,(2) где k,m - числа (коэффициенты), причем .

Этот частный вид линейного уравнения будем называть линейной функцией.

С помощью равенства (2) легко, указав конкретное значение х, вычислить соответствующее значение у. Пусть, например,

у = 2х + 3. Тогда:
если х = 0, то у = 3;
если х = 1, то у = 5;
если х = -1, то у = 1;
если х = 3, то у = 9 и т. д.

Обычно эти результаты оформляют в виде таблицы :

Значения у из второй строки таблицы называют значениями линейной функции у = 2х + 3, соответственно, в точках х = 0, х = 1, х = -1,х=-3.

В уравнении (1) переменные хну равноправны, а в уравнении (2) - нет: конкретные значения мы придаем одной из них - переменной х, тогда как значение переменной у зависит от выбранного значения переменной х. Поэтому обычно говорят, что х - независимая переменная (или аргумент), у - зависимая переменная.

Обратите внимание: линейная функция - это специальный вид линейного уравнения с двумя переменными. Графиком уравнения у - kx + т, как всякого линейного уравнения с двумя переменными, является прямая - ее называют также графком линейной функции y = kx + тп. Таким образом, справедлива следующая теорема.


Пример 1. Построить график линейной функции у = 2х + 3.

Решение. Составим таблицу:

Во второй ситуации независимая переменная х, обозначающая, как и в первой ситуации, число дней, может принимать только значения 1, 2, 3, ..., 16. Действительно, если х = 16, то по формуле у = 500 - З0x находим: у = 500 - 30 16 = 20. Значит, уже на 17-й день вывезти со склада 30 т угля не удастся, поскольку на складе к этому дню останется всего 20 т и процесс вывоза угля придется прекратить. Следовательно, уточненная математическая модель второй ситуации выглядит так:

у = 500 - ЗОд:, где х = 1, 2, 3, .... 16.

В третьей ситуации независимая переменная х теоретически может принять любое неотрицательное значение (напр., значение х = 0, значение х = 2, значение х = 3,5 и т. д.), но практически турист не может шагать с постоянной скоростью без сна и отдыха сколько угодно времени. Значит, нам нужно было сделать разумные ограничения на х, скажем, 0 < х < 6 (т. е. турист идет не более 6 ч).

Напомним, что геометрической моделью нестрогого двойного неравенства 0 < х < 6 служит отрезок (рис. 37). Значит, уточненная модель третьей ситуации выглядит так: у = 15 + 4х, где х принадлежит отрезку .

Условимся вместо фразы «х принадлежит множеству X» писать (читают: «элемент х принадлежит множеству X», е - знак принадлежности). Как видите, наше знакомство с математическим языком постоянно продолжается.

Если линейную функцию у = kx + m надо рассматривать не при всех значениях х, а лишь для значений х из некоторого числового промежутка X, то пишут:

Пример 2. Построить график линейной функции:

Решение, а) Составим таблицу для линейной функции y = 2x + 1

Построим на координатной плоскости хОу точки (-3; 7) и (2; -3) и проведем через них прямую линию. Это - график уравнения у = -2x: + 1. Далее, выделим отрезок, соединяющий построенные точки (рис. 38). Этот отрезок и есть график линейной функции у = -2х+1, гдехе [-3, 2].

Обычно говорят так: мы построили график линейной функции у = - 2х + 1 на отрезке [- 3, 2].

б) Чем отличается этот пример от предыдущего? Линейная функция та же (у = -2х + 1), значит, и ее графиком служит та же прямая. Но - будьте внимательны! - на этот раз х е (-3, 2), т. е. значения х = -3 и х = 2 не рассматриваются, они не принадлежат интервалу (- 3, 2). Как мы отмечали концы интервала на координатной прямой? Светлыми кружочками (рис. 39), об этом мы говорили в § 26. Точно так же и точки (- 3; 7) и B; - 3) придется отметить на чертеже светлыми кружочками. Это будет напоминать нам о том, что берутся лишь те точки прямой у = - 2х + 1, которые лежат между точками, отмеченными кружочками (рис. 40). Впрочем, иногда в таких случаях используют не светлые кружочки, а стрелки (рис. 41). Это непринципиально, главное, понимать, о чем идет речь.


Пример 3. Найти наибольшее и наименьшее значения линейной функции на отрезке .
Решение. Составим таблицу для линейной функции

Построим на координатной плоскости хОу точки (0; 4) и (6; 7) и проведем через них прямую - график линейной х функции (рис. 42).

Нам нужно рассмотреть эту линейную функцию не целиком, а на отрезке , т. е. для х е .

Соответствующий отрезок графика выделен на чертеже. Замечаем, что самая большая ордината у точек, принадлежащих выделенной части, равна 7 - это и есть наибольшее значение линейной функции на отрезке . Обычно используют такую запись: у наиб =7.

Отмечаем, что самая маленькая ордината у точек, принадлежащих выделенной на рисунке 42 части прямой, равна 4 - это и есть наименьшее значение линейной функции на отрезке .
Обычно используют такую запись: y наим. = 4.

Пример 4. Найти у наиб и y наим. для линейной функции y = -1,5x + 3,5

а) на отрезке ; б) на интервале (1,5);
в) на полуинтервале .

Решение. Составим таблицу для линейной функции у = -l,5x + 3,5:

Построим на координатной плоскости хОу точки (1; 2) и (5; - 4) и проведем через них прямую (рис. 43-47). Выделим на построенной прямой часть, соответствующую значениям х из отрезка (рис. 43), из интервала A, 5) (рис. 44), из полуинтервала (рис. 47).

а) С помощью рисунка 43 нетрудно сделать вывод, что у наиб = 2 (этого значения линейная функция достигает при х = 1), а у наим. = - 4 (этого значения линейная функция достигает при х = 5).

б) Используя рисунок 44, делаем вывод: ни наибольшего, ни наименьшего значений на заданном интервале у данной линейной функции нет. Почему? Дело в том, что, в отличие от предыдущего случая, оба конца отрезка, в которых как раз и достигались наибольшее и наименьшее значения, из рассмотрения исключены.

в) С помощью рисунка 45 заключаем, что y наиб. = 2 (как и в первом случае), а наименьшего значения у линейной функции нет (как и во втором случае).

г) Используя рисунок 46, делаем вывод: у наиб = 3,5 (этого значения линейная функция достигает при х = 0), а у наим. не существует.

д) С помощью рисунка 47 делаем вывод: y наим = -1 (этого значения линейная функция достигает при х = 3), а у наиб., не существует.

Пример 5. Построить график линейной функции

у = 2х - 6. С помощью графика ответить на следующие вопросы:

а) при каком значении х будет у = 0?
б) при каких значениях х будет у > 0?
в) при каких значениях х будет у < 0?

Ре ш е ни е. Составим таблицу для линейной функции у = 2х- 6:

Через точки (0; - 6) и (3; 0) проведем прямую - график функции у = 2х - 6 (рис. 48).

а) у = 0 при х = 3. График пересекает ось х в точке х = 3, это и есть точка с ординатой у = 0.
б) у > 0 при х > 3. В самом деле если х > 3, то прямая расположена выше оси ж, значит, ординаты соответствующих точек прямой положительны.

в) у < 0 при х < 3. В самом деле если х < 3, то прямая расположена ниже оси х, значит, ординаты соответствующих точек прямой отрицательны. A

Обратите внимание, что в этом примере мы с помощью графика решили:

а) уравнение 2х - 6 = 0 (получили х = 3);
б) неравенство 2х - 6 > 0 (получили х > 3);
в) неравенство 2x - 6 < 0 (получили х < 3).

Замечание. В русском языке часто один и тот же объект называют по-разному, например: «дом», «здание», «сооружение», «коттедж», «особняк», «барак», «хибара», «избушка». В математическом языке ситуация примерно та же. Скажем, равенство с двумя переменными у = кх + m, где к, m - конкретные числа, можно назвать линейной функцией, можно назвать линейным уравнением с двумя переменными х и у (или с двумя неизвестными х и у), можно назвать формулой, можно назвать соотношением, связывающим х и у, можно, наконец, назвать зависимостью между х и у. Это неважно, главное, понимать, что во всех случаях речь идет о математической модели у = кх + m

.

Рассмотрим график линейной функции, изображенный на рисунке 49, а. Если двигаться по этому графику слева направо, то ординаты точек графика все время увеличиваются, мы как бы «поднимаемся в горку». В таких случаях математики употребляют термин возрастание и говорят так: если k>0, то линейная функция у = kx + m возрастает.

Рассмотрим график линейной функции, изображенный на рисунке 49, б. Если двигаться по этому графику слева направо, то ординаты точек графика все время уменьшаются, мы как бы «спускаемся с горки». В таких случаях математики употребляют термин убывание и говорят так: если k < О, то линейная функция у = kx + m убывает.

Линейная функция в жизни

А теперь давайте подведем итог этой темы. Мы с вами уже познакомились с таким понятие, как линейная функция, знаем ее свойства и научились строить графики. Так же, вы рассматривали частные случаи линейной функции и узнали от чего зависит взаимное расположение графиков линейных функций. Но, оказывается, в нашей повседневной жизни мы также постоянно пересекаемся с этой математической моделью.

Давайте мы с вами подумаем, какие реальные жизненные ситуации связаны с таким понятием, как линейные функции? А также, между какими величинами или жизненными ситуациями, возможно, устанавливать линейную зависимость?

Многие из вас, наверное, не совсем представляют, зачем им нужно изучать линейные функции, ведь это вряд ли пригодится в дальнейшей жизни. Но здесь вы глубоко ошибаетесь, потому что с функциями мы сталкиваемся постоянно и повсюду. Так как, даже обычная ежемесячная квартплата также является функцией, которая зависит от многих переменных. А к этим переменным относится метраж площади, количество жильцов, тарифов, использование электроэнергии и т.д.

Конечно же, самыми распространенными примерами функций линейной зависимости, с которыми мы с вами сталкивались – это уроки математики.

Мы с вами решали задачи, где находили расстояния, которые проезжали машины, поезда или проходили пешеходы при определенной скорости движения. Это и есть линейные функции времени движения. Но ведь эти примеры применимы не только в математике, они присутствуют в нашей повседневной жизни.

Калорийности молочных продуктов зависит жирности, а такая зависимость, как правило, является линейной функцией. Так, например, при увеличении сметане процента жирности, увеличивается и калорийность продукта.



Теперь давайте сделаем подсчеты и найдем значения k и b, решив систему уравнений:


Теперь давайте выведем формулу зависимости:

В итоге мы получили линейную зависимость.

Чтобы знать скорость распространения звука в зависимости от температуры, возможно, узнать, применив формулу: v = 331 +0,6t, где v - скорость (в м/с), t - температура. Если мы начертим график этой зависимости, то увидим, что он будет линейным, то есть представлять прямую линию.

И таких практических использований знаний в применении линейной функциональной зависимости можно перечислять долго. Начиная от платы за телефон, длины и роста волос и даже пословиц в литературе. И этот список можно продолжать до бесконечности.

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

С чем и связано её название. Это касается вещественной функции одной вещественной переменной.

Энциклопедичный YouTube

  • 1 / 5

    Если все переменные x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\dots ,x_{n}} и коэффициенты a 0 , a 1 , a 2 , … , a n {\displaystyle a_{0},a_{1},a_{2},\dots ,a_{n}} - вещественные числа, то графиком линейной функции в (n + 1) {\displaystyle (n+1)} -мерном пространстве переменных x 1 , x 2 , … , x n , y {\displaystyle x_{1},x_{2},\dots ,x_{n},y} является n {\displaystyle n} -мерная гиперплоскость

    y = a 0 + a 1 x 1 + a 2 x 2 + ⋯ + a n x n {\displaystyle y=a_{0}+a_{1}x_{1}+a_{2}x_{2}+\dots +a_{n}x_{n}}

    в частности при n = 1 {\displaystyle n=1} - прямая линия на плоскости.

    Абстрактная алгебра

    Термин «линейная функция», или, точнее, «линейная однородная функция», часто применяется для линейного отображения векторного пространства X {\displaystyle X} над некоторым полем k {\displaystyle k} в это поле, то есть для такого отображения f: X → k {\displaystyle f:X\to k} , что для любых элементов x , y ∈ X {\displaystyle x,y\in X} и любых α , β ∈ k {\displaystyle \alpha ,\beta \in k} справедливо равенство

    f (α x + β y) = α f (x) + β f (y) {\displaystyle f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)}

    причём в этом случае вместо термина «линейная функция» используются также термины линейный функционал и линейная форма - также означающие линейную однородную функцию определённого класса.

    Важно!

    Функцию вида «y = kx + b » называют линейной функцией.

    Буквенные множители «k » и «b » называют числовыми коэффициентами .

    Вместо «k » и «b » могут стоять любые числа (положительные, отрицательные или дроби).

    Другими словами, можно сказать, что «y = kx + b » — это семейство всевозможных функций, где вместо «k » и «b » стоят числа.

    Примеры функций типа «y = kx + b ».

    • y = 5x + 3
    • y = −x + 1
    • y = x − 2 k =
      2
      3
      b = −2 y = 0,5x k = 0,5 b = 0

      Обратите особое внимание на функцию «y = 0,5x » в таблице. Часто совершают ошибку при поиске в ней числового коэффициента «b ».

      Рассматривая функцию «y = 0,5x », неверно утверждать, что числового коэффициента «b » в функции нет.

      Числовый коэффициент «b » присутствет в функции типа «y = kx + b » всегда. В функции «y = 0,5x » числовый коэффициент «b » равен нулю .

      Как построить график линейной функции
      «y = kx + b »

      Запомните!

      Графиком линейной функции «y = kx + b » является прямая .

      Так как графиком функции «y = kx + b » является прямая линия , функцию называют линейной функцией .

      Из геометрии вспомним аксиому (утверждение, которое не требует доказательств), что через любые две точки можно провести прямую и притом только одну.

      Исходя из аксиомы выше следует, что чтобы построить график функции вида
      «у = kx + b » нам достаточно будет найти всего две точки.

      Для примера построим график функции «y = −2x + 1 ».

      Найдем значение функции «y » для двух произвольных значений «x ». Подставим, например, вместо «x » числа «0 » и «1 ».

      Важно!

      Выбирая произвольные числовые значения вместо «x », лучше брать числа «0 » и «1 ». С этими числами легко выполнять расчеты.

      Полученные значения «x » и «y » — это координаты точек графика функции.

      Запишем полученные координаты точек «y = −2x + 1 » в таблицу.

      Отметим полученные точки на системе координат.


      Теперь проведем прямую через отмеченные точки. Эта прямая будет являться графиком функции «y = −2x + 1 ».


      Как решать задачи на
      линейную функцию «y = kx + b »

      Рассмотрим задачу.

      Построить график функции «y = 2x + 3 ». Найти по графику:

      1. значение «y » соответствующее значению «x » равному −1; 2; 3; 5 ;
      2. значение «x », если значение «y » равно 1; 4; 0; −1 .

      Вначале построим график функции «y = 2x + 3 ».

      Используем правила, по которым мы выше. Для построения графика функции «y = 2x + 3 » достаточно найти всего две точки.

      Выберем два произвольных числовых значения для «x ». Для удобства расчетов выберем числа «0 » и «1 ».

      Выполним расчеты и запишем их результаты в таблицу.

      Отметим полученные точки на прямоугольной системе координат.

      Соединим полученные точки прямой. Проведенная прямая будет являться графиком функции «y = 2x + 3 ».

      Теперь работаем с построенным графиком функции «y = 2x + 3 ».

      Требуется найти значение «y », соответствующее значению «x »,
      которое равно −1; 2; 3; 5 .

      • Ox » к нулю (x = 0) ;
      • подставить вместо «x » в формулу функции ноль и найти значение «y »;
      • Oy » .

      Подставим вместо «x » в формулу функции «y = −1,5x + 3 » число ноль.

      Y(0) = −1,5 · 0 + 3 = 3


      (0; 3) — координаты точки пересечения графика функции «y = −1,5x + 3 » c осью «Oy ».

      Запомните!

      Чтобы найти координаты точки пересечения графика функции
      с осью «Ox » (осью абсцисс) нужно:

      • приравнять координату точки по оси «Oy » к нулю (y = 0) ;
      • подставить вместо «y » в формулу функции ноль и найти значение «x »;
      • записать полученные координаты точки пересечения с осью «Oy » .

      Подставим вместо «y » в формулу функции «y = −1,5x + 3 » число ноль.

      0 = −1,5x + 3
      1,5x = 3 | :(1,5)
      x = 3: 1,5
      x = 2


      (2; 0) — координаты точки пересечения графика функции «y = −1,5x + 3 » c осью «Ox ».

      Чтобы было проще запомнить, какую координату точки нужно приравнивать к нулю, запомните «правило противоположности».

      Важно!

      Если нужно найти координаты точки пересечения графика с осью «Ox » , то приравниваем «y » к нулю.

      И наооборот. Если нужно найти координаты точки пересечениа графика с осью «Oy » , то приравниваем «x » к нулю.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Гречка с фаршем рецепт на сковороде Гречка с фаршем и овощами на сковороде Гречка с фаршем рецепт на сковороде Гречка с фаршем и овощами на сковороде Профессия Проходчик.  Кто такой Проходчик. Описание профессии. Вакансии проходчика для работы вахтой Проходчик профессия Профессия Проходчик. Кто такой Проходчик. Описание профессии. Вакансии проходчика для работы вахтой Проходчик профессия «Из тьмы веков» Идрис Базоркин Из тьмы веков читать «Из тьмы веков» Идрис Базоркин Из тьмы веков читать