Электронная лампа. Вакуумная электронная лампа как источник дармовой электроэнергии Устройство электронных ламп

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Электронная лампа - электровакуумный прибор (электровакуумные приборы - приборы для генерации, усиления и преобразования магнитной энергии, в которых рабочее пространство освобождено от воздуха и защищено от окружающей атмосферы жесткой газонепроницаемой оболочкой), действие которого основано на изменении потока электронов (отбираемых от катода и движущихся в вакууме) электрическим полем, формируемым с помощью электродов. в зависимости от значеня выходной мощности электронные лампы делятся на приемно-усилительные лампы (выходная мощность - не свыше 10 Вт) и генераторные лампы (свыше 10 Вт).

Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы - 7 см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15-20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации "современного" компьютера того времени требовались специальные системы охлаждения.

Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штекера с нужным гнездом.

Примерами машин I-го поколения могут служить Mark 1, ENIAC, EDSAC (Electronic Delay Storage Automatic Calculator), - первая машина с хранимой программой. UNIVAC (Universal Automatic Computer). Первый экземпляр Юнивака был передан в Бюро переписи населения США. Позднее было создано много разных моделей Юнивака, которые нашли применение в различных сферах деятельности. Таким образом, Юнивак стал первым серийным компьютером. Кроме того, это был первый компьютер, где вместо перфокарт использовалась магнитная лента.

Когда в СССР стало известно о создании в США машины ENIAC в АН Украины и в АН СССР была начата разработка первой, отечественной, действующей ЭВМ. Сведения о разработках на Западе поступали отрывочные, и, естественно, документация по первым ЭВМ была недоступна нашим специалистам. Руководителем разработки был назначен Сергей Александрович Лебедев. Разработка велась под Киевом, в секретной лаборатории в местечке Феофания. Малая электронная счетная машина (МЭСМ) - так называлось детище Лебедева и сотрудников его лаборатории - занимала целое крыло двухэтажного здания и состояла из 6 тысяч электронных ламп. Ее проектирование, монтаж и отладка были выполнены в рекордно быстрый срок - за 2 года, силами всего лишь 12 научных сотрудников и 15 техников. Несмотря на то, что МЭСМ по существу была лишь макетом действующей машины, она сразу нашла своих пользователей: к первой ЭВМ выстраивалась очередь киевских и московских математиков, задачи которых требовали использования быстродействующего вычислителя. В своей первой машине Лебедев реализовал основополагающие принципы построения компьютеров, такие как:

  • Ш наличие арифметических устройств, памяти, устройств ввода/вывода и управления;
  • Ш кодирование и хранение программы в памяти, подобно числам;
  • Ш двоичная система счисления для кодирования чисел и команд;
  • Ш автоматическое выполнение вычислений на основе хранимой программы;
  • Ш наличие как арифметических, так и логических операций;
  • Ш иерархический принцип построения памяти;
  • Ш использование численных методов для реализации вычислений.

После Малой электронной машины была создана и первая Большая - БЭСМ-1, над которой С.И. Лебедев работал уже в Москве, в ИТМ и ВТ АН СССР. Одновременно с ИТМ и ВТ и конкурируя с ним, разработкой ЭВМ занималось недавно сформированное СКБ-245 со своей ЭВМ "Стрела".

БЭСМ и "Стрела" составили парк созданного в 1955 году Вычислительного центра АН СССР, на который сразу легла очень большая нагрузка. Потребность в сверхбыстрых (по тем временам) расчетах испытывали математики, ученые-термоядерщики, первые разработчики ракетной техники и многие другие. Когда в 1954 году оперативная память БЭСМ была укомплектована усовершенствованной элементной базой, быстродействие машины (до 8 тысяч операций в секунду) оказалось на уровне лучших американских ЭВМ и самым высоким в Европе. Доклад Лебедева о БЭСМ в 1956 году на конференции в западногерманском городе Дармштадте произвел настоящий фурор, поскольку малоизвестная советская машина оказалась лучшей европейской ЭВМ. В 1958 году БЭСМ, теперь уже БЭСМ-2, в которой память на потенциалоскопах была заменена ЗУ на ферритовых сердечниках и расширен набор команд, была подготовлена к серийному производству на одном из заводов в Казани. Так начиналась история промышленного выпуска ЭВМ в Советском Союзе!

Элементная база первых вычислительных машин - электронные лампы - определяла их большие габариты, значительное энергопотребление, низкую надежность и, как следствие, небольшие объемы производства и узкий круг пользователей, главным образом, из мира науки. В таких машинах практически не было средств совмещения операций выполняемой программы и распараллеливания работы различных устройств; команды выполнялись одна за другой, АЛУ простаивало в процессе обмена данными с внешними устройствами, набор которых был очень ограниченным. Объем оперативной памяти БЭСМ-2, например, составлял 2048 39-разрядных слов, в качестве внешней памяти использовались магнитные барабаны и накопители на магнитной ленте. Очень трудоемким и малоэффективным был процесс общения человека с машиной первого поколения. Как правило, сам разработчик, написавший программу в машинных кодах, вводил ее в память ЭВМ с помощью перфокарт и затем вручную управлял ее выполнением. Электронный монстр на определенное время отдавался в безраздельное пользование программисту, и от уровня его мастерства, способности быстро находить и исправлять ошибки и умения ориентироваться за пультом ЭВМ во многом зависела эффективность решения вычислительной задачи. Ориентация на ручное управление определяла отсутствие каких бы то ни было возможностей буферизации программ.

Явление термоэлектронной эмиссии и обусловленный им электронный ток через вакуум лежат в основе устройства очень большого числа разнообразных электронных приборов, нашедших себе чрезвычайно важные применения в технике и в быту. Мы остановимся только на двух наиболее важных типах этих приборов: электронной лампе (радиолампе) и электроннолучевой трубке.

Устройство простейшей электронной лампы показано на рис. 176. В ней имеется раскаленная вольфрамовая нить 1, являющаяся источником электронов (катод), и металлический цилиндр 2 (анод), окружающий катод. Оба электрода помещены в стеклянный или металлический баллон 3, воздух из которого тщательно откачан. Такая двухэлектродная лампа называется вакуумным диодом.

Рис. 176. а) Двухэлектродная лампа (диод): 1 – катод (накаленная нить), 2 – анод (цилиндр), 3 – стеклянный баллон. б) Условное изображение диода

Если мы включим эту лампу в цепь батареи или другого источника тока так, чтобы анод ее был соединен с положительным полюсом источника, а катод – с отрицательным (рис. 177,а), и накалим катод при помощи вспомогательного источника (батареи накала Бн), то испаряющиеся из нити электроны будут лететь к аноду, и через цепь пойдет ток. Если же мы переключим провода так, чтобы минус источника был соединен с анодом лампы, а плюс – с ее катодом (рис. 177,б), то испаряющиеся из катода электроны будут отбрасываться полем обратно на катод, и тока в цепи не будет. Таким образом, диод обладает тем свойством, что он пропускает ток в одном направлении и не пропускает его в обратном направлении. Такого рода устройства, пропускающие ток только в одном направлении, называются электрическими вентилями. Они широко применяются для выпрямления переменного тока, т. е. для превращения его в постоянный ток (§ 166). Вакуумные диоды, специально приспособленные для этой цели, называются в технике кенотронами.

Рис. 177. а) Ток проходит через диод, когда анод соединен с положительным полюсом батареи Ба, а катод – с отрицательным. б) Ток не проходит через диод, когда его анод соединен с отрицательным полюсом батареи, а катод – с положительным. Бн – батарея накала нити

Электронные лампы более сложного типа, нашедшие себе широкое применение в радиотехнике, автоматике и ряде других отраслей техники, содержат, помимо накаленного катода (источника электронов) и собирающего эти электроны анода, еще третий дополнительный электрод в виде сетки, помещаемой между катодом и анодом. Обычно сетка бывает с очень крупными ячейками; например, ее делают в виде редкой спирали (рис. 178).

Рис. 178. а) Трехэлектродная лампа: 1 – катод (накаленная нить), 2 – анод (цилиндр), 3 – сетка (редкая спираль). б) Условное изображение триода

Основная идея, на которой основано применение таких ламп, заключается в следующем. Включим лампу в цепь батареи Ба, как показано на рис. 179, и будем накаливать катод с помощью вспомогательной батареи Бн (батареи накала). Включенный в цепь измерительный прибор покажет, что в цепи идет анодный ток . Подключим теперь к катоду лампы и сетке еще одну батарею Бс, напряжение которой можем произвольно менять, и будем с ее помощью изменять разность потенциалов между катодом и сеткой. Мы увидим, что при этом изменяется и сила анодного тока. Таким образом, мы получаем возможность управлять током в анодной цепи лампы, изменяя разность потенциалов между ее катодом и сеткой. В этом и заключается важнейшая особенность электронных ламп.

Кривая, изображающая зависимость анодного тока лампы от ее сеточного напряжения , носит название вольтамперной характеристики лампы. Типичная характеристика трехэлектродной лампы показана на рис. 180. Как видно из этого рисунка, когда сетка находится при положительном потенциале по отношению к катоду, т. е. соединена с положительным полюсом батареи, то увеличение сеточного напряжения приводит к увеличению анодного тока до тех пор, пока этот ток не достигнет насыщения. Если же мы сделаем сетку отрицательной по отношению к катоду, то при увеличении абсолютного значения сеточного напряжения анодный ток будет падать, пока при некотором отрицательном потенциале на сетке лампа не окажется запертой, т. е. ток в анодной цепи не обратится в нуль.

Рис. 180. Вольтамперная характеристика трехэлектродной лампы

Нетрудно понять причину этих явлений. Когда сетка заряжена положительно относительно катода, она притягивает к себе электроны из облака объемного заряда вблизи катода; при этом значительная часть электронов пролетает между витками сетки и попадает на анод, усиливая анодный ток. Таким образом, способствуя рассасыванию объемного заряда, положительно заряженная сетка увеличивает анодный ток. Наоборот, отрицательно заряженная сетка уменьшает анодный ток, потому что отбрасывает назад электроны, т. е. увеличивает объемный заряд вблизи катода. Так как сетка расположена гораздо ближе к катоду, чем анод, то уже малые изменения разности потенциалов между ней и катодом очень сильно отражаются на объемном заряде и сильно влияют на силу анодного тока. В обычных электронных лампах изменение сеточного напряжения на 1 В меняет анодный ток на несколько миллиампер. Для того чтобы достичь такого же изменения тока путем изменения анодного напряжения, это напряжение нужно было бы изменить гораздо больше – на несколько десятков вольт.

Одним из важнейших применений электронных ламп является применение их в качестве усилителей слабых токов и напряжений. Поясним на простом примере, как это осуществляется. Представим себе, что между сеткой и катодом лампы включен резистор с очень большим сопротивлением , скажем 1 МОм (рис. 181). Проходящий через это сопротивление очень слабый ток , скажем 1 мкА, создаст на этом сопротивлении по закону Ома напряжение . В нашем примере это напряжение равно 1 В. Но при таком изменении сеточного напряжения анодный ток меняется на 2-3 мА. Стало быть, изменение тока через сеточное сопротивление на 1 мкА вызывает изменение анодного тока, в несколько тысяч раз большее. Мы усиливаем, таким образом, первоначальный очень слабый ток в несколько тысяч раз, доставляя необходимую энергию за счет анодной батареи.

Рис. 181. Схема включения трехэлектродной лампы как усилителя тока и напряжения

Если в анодную цепь мы включим некоторое «нагрузочное» сопротивление , скажем 10 кОм, то изменение анодного тока на 2-3 мА вызовет приращение напряжения на этом сопротивлении 20-30 В. Иными словами, изменение сеточного напряжения на 1 В изменяет напряжение между точками и «нагрузочного» сопротивления на 20-30 В. Мы осуществили таким образом усиление первоначального очень малого напряжения.

Лампы с тремя электродами – катодом, анодом и сеткой, – подобные изображенной на рис. 178, носят название триодов. В современной технике широко применяются и более сложные лампы с двумя, тремя и большим числом сеток. Промышленность выпускает в настоящее время для разных целей много десятков типов ламп самых разных размеров, начиная от так называемых «пальчиковых» ламп толщиной с мизинец и длиной несколько сантиметров и кончая лампами выше человеческого роста. В малых лампах, употребляющихся, например, в радиоприемниках, анодный ток равен нескольким миллиамперам, в мощных лампах он достигает многих десятков ампер.

106.1. Почему катод электронной лампы быстро разрушается, если лампа плохо откачана и в ней есть небольшое количество газа?

Электронные лампы можно классифицировать по числу электродов, назначению, диапазону частот, мощности, типу катода, габаритам.

В зависимости от числа электродов электронные лампы делят на диоды, триоды, тетроды, пентоды, гептоды, комбинированные лампы (двойные диоды, двойные триоды, триод-пентоды, триод-гептоды и т. д.).

В зависимости от выполняемых функций лампы могут быть выпрямительные, детекторные, усилительные, преобразовательные, генераторные и др.

Диодом называется электронная лампа с двумя электродами: анодом и катодом. Она была изобретена Джоном Флемингом в 1904 г. Катод располагается в центре лампы: анод, имеющий форму цилиндра, охватывает катод. Принцип действия диода сводится к следующему. Если к аноду приложен положительный потенциал, то вылетевшие из катода отрицательно заряженные электроны под действием электрического поля устремятся к положительному аноду, образуя непрерывный электронный поток, замыкающий электрическую цепь источника анодного питания. Во внешней Цепи пойдет ток анода I а. Так как условно за положительное направление тока принято направление от плюса к минусу источника тока, то внутри диода ток протекает от анода к катоду, т. е. против движения электронов. Величина анодного тока определяется количеством электронов, перелетающих с катода на анод в единицу времени.

Если к аноду диода подключить минус источника тока, а к катоду - плюс, то отрицательно заряженный анод будет отталкивать отрицательные электроны обратно на катод. В этом случае ток через лампу не пойдет. Следовательно, диод проводит электрический ток только в одном направлении - от анода к катоду, когда потенциал анода выше потенциала катода.

Односторонняя проводимость диода является его основным свойством. Именно это свойство определяет назначение диода - выпрямление переменных токов в постоянные и преобразование высокочастотных модулированных колебаний в токи звуковой частоты (детектирование).

Диоды, предназначенные для выпрямления переменного тока, называются кенотронами. В маркировке они имеют букву Ц (1Ц1С, 1Ц7С, 1Ц11П, 1Ц21П, ЗЦ18П, 5ЦЗС, 6Ц4П и др.).

Диоды, предназначенные для детектирования, являются маломощными. Они выпускаются чаще всего двуханодными или входят в состав комбинированных ламп. В маркировке эти диоды имеют букву X или Д (6Д14П, 6Д20П, 6Х6С).

Триодом называется электронная лампа, у которой в промежутке между анодом и катодом помещается третий электрод - сетка. Эта лампа предложена в 1906 г. американским ученым Ли-де-Форестом. Сетку в современных лампах выполняют в виде проволочной спирали, окружающей катод. Изготовляют сетку из никеля, молибдена или вольфрама. Сетка триода называется управляющей, так как с ее помощью легко управлять плотностью анодного тока, подавая на сетку положительное или отрицательное напряжение определенной величины.

Учитывая, что сетка в триоде расположена ближе к катоду, чем анод, ее воздействие на электронный поток будет более значительным. Это свойство триода широко используют в радиотехнике для усиления ослабленных радиосигналов. Принцип усиления радиосигнала сводится к следующему. Сигнал, который необходимо усилить, подается на управляющую сетку триода. Изменение величины потенциала сетки приведет к соответствующему изменению анодного тока. При этом с анода будет сниматься усиленное напряжение подводимого к сетке сигнала. На сетку подается постоянный отрицательный потенциал (напряжение сеточного смещения) такой величины, чтобы положительные полупериоды сигнала не создали на сетке положительного напряжения. В противном случае появляется сеточный ток (положительная сетка притянет часть электронов), в результате уменьшается анодный ток, что приводит к искажению сигнала.

Триоды используют в качестве усилителей низких и высоких частот, для генерирования различных форм импульсов в широком диапазоне частот, для согласования цепей (катодные повторители). В маркировке триодов имеется буква С или Н (двойные триоды) 6Н1П, 6НЗП, 6Н7С, 6Н9С, 6Н24П и др.

Для определения возможности применения триодов и многоэлектродных ламп вообще в той или иной схеме пользуются техническими характеристиками (параметрами) лампы, важнейшими из которых являются: крутизна характеристики, коэффициент усиления и внутреннее сопротивление лампы.

Крутизна характеристики S - это величина, показывающая, на сколько миллиампер изменится анодный ток при изменении напряжения на сетке на 1 В и постоянном напряжении на аноде. Определяют ее как отношение приращения анодного тока АI а к приращению сеточного напряжения AU C

Коэффициент усиления и определяет усилительные свойства ламп. Он представляет собой отношение приращения анодного напряжения AU a к приращению сеточного напряжения AU C , которые вызывают одно и то же приращение анодного тока АI а


Внутреннее сопротивление триода Ri- это сопротивление между анодом и катодом для переменного тока анода. Его выражают отношением приращения анодного напряжения AU a к приращению анодного тока АI а


Если крутизна оценивает действие сеточного напряжения на анодный ток, то внутреннее сопротивление позволяет оценить действие анодного напряжения на анодный ток.

Тетродом называется четырехэлектродная лампа с двумя сетками, одна из которых управляющая, другая - экранирующая. Последнюю помещают между управляющей сеткой и анодом для увеличения коэффициента усиления лампы. На экранирующую сетку подают положительное напряжение, равное 50- 80% анодного. При этих условиях электроны под действием двух ускоряющих полей (анода и второй сетки) развивают большую скорость и выбивают из анода вторичные электроны, которые движутся от него к экранирующей сетке и притягиваются ею. Данное явление называется динатронным эффектом в тетроде. Он приводит к росту тока экранирующей сетки и к уменьшению тока анода, что равносильно искажению усиливающего сигнала.

Чтобы устранить вредное влияние динатронного эффекта, в промежутке между экранирующей сеткой и анодом создают тормозящее отрицательное поле. С этой целью между сеткой и анодом помещают две металлические пластины, соединенные с катодом. Такие лампы называют лучевыми тетродами. Их широко используют в качестве оконечных усилителей сигналов низкой частоты (6П13С, 6П31С, 6П36С, 6П1П).

Второй путь устранения динатронного эффекта в тетроде - введение еще одной сетки, которая называется защитной, или антидинатронной. Лампу с пятью электродами называют пентодом. Третья сетка соединяется с катодом. Она создает тормозящее поле для вторичных электронов, вылетающих из анода, и возвращает их обратно на анод. Пентоды являются лучшими усилительными лампами, коэффициент усиления для некоторых типов пентодов доходит до нескольких тысяч. Используют их в качестве усилителей высокой и промежуточной частот.

Гептодом называется семиэлектродная электронная лампа, имеющая пять сеток. Назначение сеток может быть следующим: первая и третья - управляющие, вторая и четвертая - экранирующие, пятая - антидинатронная. Гептоды используют для преобразования электрических колебаний одной частоты в колебания другой. Например, в супергетеродинных приемниках они выполняют роль преобразователя высокочастотных колебаний принятого сигнала в сигналы промежуточной частоты.

В современной радиоаппаратуре широко используют комбинированные лампы, у которых в одном баллоне помещены две или три лампы, имеющие свои отдельные системы электродов. Преимущество таких ламп очевидно: они уменьшают габариты радиоаппаратуры, повышают ее экономичность. Отечественная промышленность выпускает следующие комбинированные лампы: двойные диоды, двойные триоды, диод-триоды, диод- пентоды, триод-пентоды и др. (6И1П, 6Ф1П, 6ФЗП и др.).

Было время, когда вся электроника создавалась на основе электронных вакуумных ламп, которые по внешнему виду напоминают маленькие лампочки, и которые выполняют функции усилителей, генераторов и электронных коммутаторов. В современной электронике для выполнения этих всех функций используются транзисторы, которые изготавливаются в промышленных масштабах при весьма низкой их себестоимости. Теперь же, исследователи из Исследовательского центра НАСА имени Эймса (NASA Ames Research Center) разработали технологию производства наноразмерных электронных вакуумных ламп, что позволит в будущем создать более быстро и более надежно работающие компьютеры.

Электронную вакуумную лампу называют вакуумной из-за того, что это стеклянный сосуд с вакуумом внутри. Внутри лампы есть нить накаливания, но она разогревается до более низкой температуры нежели нити обычных осветительных ламп. Так же, внутри электронной вакуумной лампы имеется положительно заряженный электрод, одна или несколько металлических сеток, с помощью которых управляют электрическим сигналом, проходящим через лампу.

Нить накала нагревает электрод лампы, который создает в окружающем пространстве облако электронов, и чем выше температура электрода, тем на большее расстояние от него могут удалиться свободные электроны. Когда это электронное облако достигает положительно заряженного электрода, то через лампу может течь электрический ток. Тем временем, регулируя полярность и значение электрического потенциала на металлической сетке, можно усилить поток электронов или прекратить его вообще. Таким образом, лампа может служить усилителем и коммутатором электрических сигналов.

Электронные вакуумные лампы, хоть редко, но используются сейчас, в основном для создания высококачественных акустических систем. Даже самые лучшие образцы полевых транзисторов не могут обеспечить того качества звука, которое обеспечивают электронные лампы. Это происходит по одной главной причине, электроны в вакууме, не встречая сопротивления, перемещаются с максимальной скоростью, чего невозможно добиться при движении электронов сквозь твердые полупроводниковые кристаллы.

Электронные вакуумные лампы более надежны в работе нежели транзисторы, которые достаточно просто вывести из строя. К примеру, если транзисторная электроника попадает в космос, то рано или поздно ее транзисторы выходят из строя, "поджаренные" космическим излучением. Электронные лампы же практически не подвержены воздействию радиации.

Создание электронной вакуумной лампы, размерами не превышающей размеры современного транзистора, является огромной проблемой, особенно в массовом производстве. Изготовление крошечных индивидуальных вакуумных камер - это сложнейший и дорогой процесс, который применяют только в случаях острой необходимости. Но ученые НАСА решили эту проблему достаточно интересным путем, оказалось, что при уменьшении размеров электронной лампы менее некоторого предела наличие вакуума перестает быть необходимым условием. Наноразмерные вакуумные лампы, у которых имеется нить накаливания и один электрод, имеют размеры в 150 нанометров. Зазор между электродами лампы настолько мал, что наличие в нем воздуха не является помехой для их работы, вероятность столкновения электронов с молекулой воздуха стремиться к нулю.

Естественно, впервые новые наноэлектронные лампы появятся в электронном оборудовании космических кораблей и аппаратов, где устойчивость электроники к радиации имеет первостепенное значение. Помимо этого, электронные лампы могут работать на частотах, в десятки раз превышающих частоты работы самых лучших экземпляров кремниевых транзисторов, что в будущем позволит на их основе создавать компьютеры, намного более быстрые, чем те, которые мы используем сейчас.

Электронная лампа

Российская экспортная радиолампа 6550C

Электро́нная ла́мпа , радиола́мпа - электровакуумный прибор (точнее, вакуумный электронный прибор), работающий за счёт управления интенсивностью потока электронов , движущихся в вакууме или разрежённом газе между электродами .

Радиолампы массово использовались в ХХ веке как активные элементы электронной аппаратуры (усилители, генераторы, детекторы, переключатели и т.п.). В настоящее время практически полностью вытеснены полупроводниковыми приборами. Иногда ещё применяются в мощных высокочастотных передатчиках, высококачественной аудиотехнике.

Электронные лампы, предназначенные для освещения (лампы-вспышки, ксеноновые лампы , и натриевые лампы), радиолампами не называются и обычно относятся к классу осветительных приборов.

Принцип действия

Электронная лампа RCA "808"

Вакуумные электронные лампы с подогреваемым катодом

  • В результате термоэлектронной эмиссии электроны покидают поверхность катода.
  • Под воздействием разности потенциалов между анодом и катодом электроны достигают анода и образуют анодный ток во внешней цепи.
  • С помощью дополнительных электродов (сеток) осуществляется управление электронным потоком путём подачи на эти электроды электрического потенциала.

В вакуумных электронных лампах наличие газа ухудшает характеристики лампы.

Газонаполненные электронные лампы

Основным для этого класса устройств является поток ионов и электронов в газе, наполняющем лампу. Поток может быть создан, как и в вакуумных устройствах, термоэлектронной эмиссией, а может создаваться образованием электрического разряда в газе за счёт напряжённости электрического поля.

История

По способу подогрева катоды подразделяются на катоды прямого и косвенного накала.

Катод прямого накала представляет собой металлическую нить. Лампы прямого накала потребляют меньшую мощность и быстрее разогреваются, однако, обычно имеют меньший срок службы, при использовании в сигнальных цепях требуют питания накала постоянным током, а в ряде схем неприменимы из-за влияния разницы потенциалов на разных участках катода на работу лампы.
Катод косвенного накала представляет собой цилиндр, внутри которого располагают нить накала (подогреватель). Такие лампы называются лампами косвенного накала.

Катоды ламп активируют металлами, имеющими малую работу выхода . В лампах прямого накала для этого обычно применяют торий , в лампах косвенного накала - барий . Несмотря на наличие тория в катоде, лампы прямого накала не представляют опасности для пользователя, поскольку его излучение не выходит за пределы баллона.

Анод

Анод электронной лампы

Положительный электрод. Выполняется в форме пластины, чаще коробочки имеющей форму цилиндра или параллелепипеда. Изготавливается обычно из никеля или молибдена, иногда из тантала и графита.

Сетка

Между катодом и анодом располагаются сетки , которые служат для управления потоком электронов и устранения побочных явлений, возникающих при движении электронов от катода к аноду.

Сетка представляет собой решетку из тонкой проволоки или чаще выполнена в виде проволочной спирали, навитой на несколько поддерживающих стоек (траверс). В стержневых лампах роль сеток выполняет система из нескольких тонких стержней, параллельных катоду и аноду, и физика их работы иная, чем в традиционной конструкции.

По назначению сетки подразделяются на следующие виды:

В зависимости от назначения лампы, она может иметь до семи сеток. В некоторых вариантах включения многосеточных ламп, отдельные сетки могут выполнять роль анода. Например, в генераторе по схеме Шембеля на тетроде или пентоде собственно генератором служит «виртуальный» триод, образованный катодом, управляющей сеткой и экранирующей сеткой в качестве анода .

Баллон

Основные типы

Малогабаритные («пальчиковые») радиолампы

Основные типы электронных вакуумных ламп:

  • Диоды (легко делаются на большие напряжения, см кенотрон)
  • лучевые тетроды и пентоды (как разновидности этих типов)
  • комбинированные лампы (фактически включают 2 или более ламп в одном баллоне)

Современные применения

Металлокерамический генераторный триод ГС-9Б с воздушным охлаждением (СССР)

Высокочастотная и высоковольтная мощная техника

  • В мощных радиовещательных передатчиках (от 100 Вт до единиц мегаватт) в выходных каскадах применяются мощные и сверхмощные лампы с воздушным или водяным охлаждением анода и высоким (более 100 А) током накала. Магнетроны , клистроны , т. н. радиолампа бегущей волны обеспечивают сочетание высоких частот, мощностей и приемлемой стоимости (а зачастую и просто принципиальной возможности существования) элементной базы.
  • Магнетрон можно встретить не только в радаре , но и в любой микроволновой печи.
  • При необходимости выпрямления или быстрой коммутации нескольких десятков кВ, которую невозможно осуществлять механическими ключами, необходимо использовать радиолампы. Так, кенотрон обеспечивает приемлемую динамику на напряжениях до миллиона вольт.

Военная промышленность

Из-за принципа действия электронные лампы являются устройствами, значительно более устойчивыми к таким поражающим факторам, как электромагнитный импульс. Для информации: в единственном устройстве может быть несколько сотен ламп. В СССР для применения в бортовой военной аппаратуре в 1950-е годы были разработаны стержневые лампы , отличавшиеся малыми размерами и большой механической прочностью.

Миниатюрная лампа типа «желудь» (пентод 6Ж1Ж, СССР, 1955 г.)

Космическая техника

Радиационная деградация полупроводниковых материалов и наличие естественного вакуума межпланетной среды делает применение некоторых типов ламп средством повышения надёжности и долговечности космических аппаратов. Применение в АМС Луна-3 транзисторов было связано с большим риском.

Повышенная температура среды и радиация

Ламповое оборудование может быть рассчитано на больший температурный и радиационный диапазон условий, нежели полупроводниковое.

Высококачественная звуковая аппаратура

По субъективному мнению большинства меломанов, «ламповый» звук принципиально отличается от «транзисторного». Существует несколько версий объяснения этих различий, как основанных на научных исследованиях, так и откровенно ненаучных рассуждениях. Одно из главных объяснений различий лампового и транзисторного звука, заключается в "естественности" звучания ламповой аппаратуры. Ламповый звук "объемный" (некоторые называют его "голографическим"), в отличие от "плоского" транзисторного. Ламповый усилитель отчетливо передает эмоции, энергетику исполнителя, "драйв" (за что их обожают гитаристы). Транзисторные усилители с трудом справляются с такими задачами. Нередко, конструкторы транзисторных усилителей используют схожую с лампами схемотехнику (режим работы в классе А, трансформаторы, отсутствие общей отрицательной обратной связи). Общим результатом этих представлений стало «возвращение» ламповой техники в сферу высококачественных усилителей . Объективная (научная) причина такого положения - высокая линейность (но не идеальная) лампы, в первую очередь триода. Транзистор, в первую очередь биполярный, элемент вообще нелинейный, и как правило не может работать без мер по линеаризации.

Достоинства ламповых усилителей:

Простота схем. Её параметры мало зависят от внешних факторов. В результате в ламповом усилителе, как правило, меньше деталей, чем в полупроводниковом.

Параметры ламп слабее зависят от температуры, чем параметры транзистора. Лампы малочувствительны к электрическим перегрузкам. Малое число деталей также весьма способствует надёжности и снижению искажений, вносимых усилителем. В транзисторном усилителе имеются проблемы с "тепловыми" искажениями.

Хорошая согласуемость входа лампового усилителя с нагрузкой. Ламповые каскады имеют очень большое входное сопротивление, что снижает потери и способствует уменьшению количества активных элементов в радиоустройстве. - Простота обслуживания. Если, например, у концертного усилителя прямо во время выступления выходит из строя лампа, то заменить её гораздо проще, чем сгоревший транзистор или микросхему. Но этим на концертах всё равно никто не занимается. Усилителей на концертах всегда в запасе, а ламповых - в двойном запасе (потому что, как ни странно, ламповые усилители значительно чаще ломаются).

Отсутствие некоторых видов искажений, присущих транзисторным каскадам, что благоприятно сказывается на звуке.

При грамотном использовании преимуществ ламп можно создавать усилители, превосходящие транзисторные по качеству звучания в пределах определённых ценовых категорий.

Субъективно винтажный внешний вид при создании имиджевых образцов аппаратуры.

Нечувствительность к радиации вплоть до очень высоких уровней.

Недостатки ламповых усилителей:

Помимо питания анодов, лампы требуют дополнительных затрат мощности на накал. Отсюда низкий КПД, и как следствие - сильный нагрев.

Ламповая аппаратура не может быть мгновенно готова к работе. Требуется предварительный прогрев ламп в течение нескольких десятков секунд. Исключение составляют лампы прямого накала, которые начинают работать сразу.

Выходные ламповые каскады требуется согласовывать с нагрузкой при помощи трансформаторов. Как следствие - сложность конструкции и плохие массо-габаритные показатели за счёт трансформаторов.

Лампы требуют применения высоких напряжений питания, составляющих сотни (а в мощных усилителях - тысячи) вольт. Это накладывает определённые ограничения в плане безопасности при эксплуатации таких усилителей. Также высокое снимаемое напряжение почти всегда требует применения понижающающего выходного трансформатора. При этом любой трансформатор является нелинейным устройством в широком диапазоне частот, что обуславливает внесение нелинейных искажений в звучание на уровне близком к 1% у лучших моделей ламповых усилителей (для сравнения: нелинейные искажения лучших транзисторных усилителей настолько малы, что их невозможно измерить). Для лампового усилителя, можно считать нормальными искажения на уровне 2-3%. Характер и спектр этих искажений отличается от искажений транзисторного усилителя. На субъективном восприятии, обычно это никак не сказывается. Трансформатор - конечно нелинейный элемент. Но его очень часто используют на выходе ЦАПа, где он осуществляет гальваническую развязку (препятствует проникновению помех из ЦАПа), играет роль фильтра ограничивающего полосу, и по видимому, обеспечивает правильный "расклад" фаз сигнала. В итоге, несмотря на все минусы (в первую очередь - высокую стоимость), звучание только выигрывает. Также трансформаторы, не редко, с успехом, используют в транзисторных усилителях.

Лампы имеют ограниченный срок службы. С течением времени параметры ламп меняются, катоды теряют эмиссию (способность испускать электроны), а нить накала может перегореть (большинство ламп работают до отказа 200-1000 часов, транзисторы на три порядка больше). У транзисторов также возможна деградация со временем.

Хрупкость классических ламп со стеклянным баллоном. Одним из решений данной проблемы была разработка в 40-х годах прошлого века ламп с металло-керамическими баллонами, имеющими большую прочность, однако такие лампы не получили широкое распространение.

Некоторые особенности ламповых усилителей:

По субъективному мнению аудиофилов, звучание электрогитар передаётся гораздо лучше, глубже и «музыкальнее» именно ламповыми усилителями. Некоторые объясняют это нелинейностью выходного узла и вносимыми искажениями, которые «ценятся» любителями электрогитар. Это на самом деле не так. Гитаристы используют эффекты связанные с увеличением искажений, но для этого в схему вносятся соответствующие изменения намеренно.

Очевидные недостатки лампового усилителя - хрупкость, большее потребление энергии, нежели у транзисторного, меньший срок службы ламп, большие искажения (об этом, как правило вспоминают, читая технические характеристики, из-за серьёзного несовершенства измерения основных параметров усилителей, многие производители такие данные не приводят, или по другому - два совершенно одинаковых, с точки зрения измеренных параметров, усилителя, могут звучать совершенно по разному), большие габариты и масса аппаратуры, а также стоимость, которая выше, чем у транзисторной и интегральной техники. Энергопотребление качественного транзисторного усилителя, также велико, впрочем его габариты и вес могут быть сопоставимы с ламповым усилителем. В общем, есть такая закономерность, чем "звучнее", "музыкальнее" и т.д., усилитель, тем его габариты и потребляемая мощность больше, а КПД ниже. Конечно, усилитель класса D может быть весьма компактным, а его КПД будет составлять 90%. Вот только что делать со звуком? Если у вас намечается борьба за экономию электроэнергии, то конечно, ламповый усилитель в этом деле не помощник.

Классификация по названию

Маркировки, принятые в СССР/России

Маркировки в других странах

В Европе в 30е годы ведущими производителями радиоламп была принята Единая европейская система буквенно-цифровой маркировки:

- Первая буква характеризует напряжение накала или его ток:

А - напряжение накала 4 В;

В - ток накала 180 мА;

С - ток накала 200 мА;

D - напряжение накала до 1.4 В;

E - напряжение накала 6.3 В;

F - напряжение накала 12.6 В;

G - напряжение накала 5 В;

H - ток накала 150 мА;

К - напряжение накала 2 В;

P - ток накала 300 мА;

U - ток накала 100 мА;

V - ток накала 50 мА;

X - ток накала 600 мА.

- Вторая и последующие буквы в обозначении определяют тип ламп:

B - двойные диоды (с общим катодом);

C - триоды (кроме выходных);

D - выходные триоды;

E - тетроды (кроме выходных);

F - пентоды (кроме выходных);

L - выходные пентоды и тетроды;

H - гексоды или гептоды (гексодного типа);

K - октоды или гептоды (октодного типа);

M - электронно-световые индикаторы настройки;

P - усилительные лампы со вторичной эмиссией;

Y - однополупериодные кенотроны;

Z - двухполупериодные кенотроны.

- Двузначное или трехзначное число обозначает внешнее оформление лампы и порядковый номер данного типа, причем первая цифра обычно характеризует тип цоколя или ножки, например:

1-9 - стеклянные лампы с ламельным цоколем («красная серия»)

1х - лампы с восьмиштырьковым цоколем («11-серия»)

3х - лампы в стеклянном баллоне с октальным цоколем;

5х - лампы с локтальным цоколем;

6х и 7х - стеклянные сверхминиатюрные лампы;

8х и от 180 до 189 - стеклянные миниатюрные с девятиштырьковой ножкой;

9х - стеклянные миниатюрные с семиштырьковой ножкой.

См. также

Газоразрядные лампы

В газоразрядных лампах обычно используется разряд в инертных газах при низких давлениях. Примеры газоразрядных электронных ламп:

  • Газоразрядники для защиты от высокого напряжения (например на воздушных линиях связи, приемниках мощных РЛС и т.п.)
  • Тиратроны (трёхэлектродные лампы - газоразрядные триоды, четырёхэлектродные - газоразрядные тетроды)
  • Ксеноновые , неоновые лампы и другие газоразрядные источники света.

См. также

  • AOpen AX4B-533 Tube - Материнская плата на чипсете Intel 845 Sk478 с ламповым усилителем звука
  • AOpen AX4GE Tube-G - Материнская плата на чипсете Intel 845GE Sk478 с ламповым усилителем звука
  • AOpen VIA VT8188A - Материнская плата на чипсете VIA K8T400M Sk754 С 6-канальным ламповым усилителем звука.
  • Hanwas X-Tube USB Dongle - USB звуковая карта для ноутбуков с поддержкой DTS, имитирующая внешним видом электронную лампу.

Примечания

Ссылки

  • Справочник по отечественным и зарубежным радиолампам. Более 14000 радиоламп
  • Справочники по радиолампам и вся необходимая информация
Пассивные твердотельные Резистор · Переменный резистор · Подстроечный резистор · Варистор · Конденсатор · Переменный конденсатор · Подстроечный конденсатор · Катушка индуктивности · Кварцевый резонатор · Предохранитель · Самовосстанавливающийся предохранитель · Трансформатор
Активные твердотельные Диод · Светодиод · Фотодиод · Полупроводниковый лазер · Диод Шоттки · Стабилитрон · Стабистор · Варикап · Вариконд · Диодный мост · Лавинно-пролётный диод · Туннельный диод · Диод Ганна
Транзистор · Биполярный транзистор · Полевой транзистор ·
Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Гречка с фаршем рецепт на сковороде Гречка с фаршем и овощами на сковороде Гречка с фаршем рецепт на сковороде Гречка с фаршем и овощами на сковороде Профессия Проходчик.  Кто такой Проходчик. Описание профессии. Вакансии проходчика для работы вахтой Проходчик профессия Профессия Проходчик. Кто такой Проходчик. Описание профессии. Вакансии проходчика для работы вахтой Проходчик профессия «Из тьмы веков» Идрис Базоркин Из тьмы веков читать «Из тьмы веков» Идрис Базоркин Из тьмы веков читать