Чему численно равна эдс источника тока. Что такое ЭДС индукции и когда возникает? Что такое ЭДС

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

На этом уроке мы подробнее разберем механизм обеспечения длительного электрического тока. Введем понятия «источник питания», «сторонние силы», опишем принцип их действия, а также введем понятие электродвижущей силы.

Тема: Законы постоянного тока
Урок: Электродвижущая сила

В одной из прошлых тем (условия существования электрического тока) уже затрагивался вопрос о необходимости источника питания для длительного поддержания существования электрического тока. Сам по себе ток, конечно же, можно получать и без таких источников питания. Например, разрядка конденсатора при вспышке фотоаппарата. Но такой ток будет слишком скоротечным (рис. 1).

Рис. 1. Кратковременный ток при взаимной разрядке двух разноименно заряженных электроскопов ()

Кулоновские силы всегда стремятся свести разноименные заряды, выровняв тем самым потенциалы по всей цепи. А, как известно, для наличия поля и тока необходима разность потенциалов. Поэтому никак нельзя обойтись без каких-либо других сил, разводящих заряды и поддерживающих разность потенциалов.

Определение. Сторонние силы - силы неэлектрического происхождения, направленные на разведение зарядов.

Эти силы могут быть разной природы в зависимости от типа источника. В батареях они химического происхождения, в электрогенераторах - магнитного. Они-то и обеспечивают существование тока, так как работа электрических сил по замкнутому контуру всегда равна нулю.

Вторая задача источников энергии, помимо поддержания разности потенциалов, - это восполнение потерь энергии на столкновении электронов с другими частицами, вследствие чего первые теряют кинетическую энергию, а внутренняя энергия проводника повышается.

Сторонние силы внутри источника выполняют работу против электрических сил, разводя заряды в стороны, противоположные их естественному ходу (как они движутся во внешней цепи) (рис. 2).

Рис. 2. Схема действия сторонних сил

Аналогом действия источника питания можно считать водяной насос, который пускает воду против ее естественного хода (снизу вверх, в квартиры). Обратно же вода естественным образом под действием силы тяжести спускается вниз, но для непрерывной работы водоснабжения квартиры необходима непрерывная работа насоса.

Определение. Электродвижущая сила - отношение работы сторонних сил по перемещению заряда к величине этого заряда. Обозначение - :

Единица измерения:

Вставка. ЭДС разомкнутой и замкнутой цепи

Рассмотрим следующую цепь (рис. 3):

Рис. 3.

При разомкнутом ключе и идеальном вольтметре (сопротивление бесконечно велико) никакого тока в цепи не будет, и внутри гальванического элемента будет совершаться только работа по разделению зарядов. В этом случае вольтметр покажет значение ЭДС.

При замыкании ключа по цепи пойдет ток, и вольтметр уже не будет показывать значение ЭДС, он будет показывать значение напряжения, такого же, как на концах резистора. При замкнутом контуре:

Здесь: - напряжение на внешней цепи (на нагрузке и подводящих проводах); - напряжение внутри гальванического элемента.

На следующем уроке мы изучим закон Ома для полной цепи.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. - М.: 2010.
  1. ens.tpu.ru ().
  2. physbook.ru ().
  3. electrodynamics.narod.ru ().

Домашнее задание

  1. Что такое сторонние силы, какова их природа?
  2. Как связано напряжение на разомкнутых полюсах источника тока с его ЭДС?
  3. Как превращается и передается энергия в замкнутой цепи?
  4. *ЭДС батарейки фонарика - 4,5 В. Будет ли от этой батарейки гореть с полным накалом лампочка, рассчитанная на 4,5 В? Почему?

Электродвижущая сила, в народе ЭДС, также как и напряжение измеряется в вольтах, но носит совсем иной характер.

ЭДС с точки зрения гидравлики

Думаю, вам уже знакома водонапорная башня из прошлой статьи про

Допустим, что башня полностью заполнена водой. Снизу башни мы просверлили отверстие и врезали туда трубу, по которой вода бежит к вам домой.


Сосед захотел полить огурцы, вы решили помыть автомобиль, мать затеяла стирку и вуаля! Поток воды стал меньше и меньше, и вскоре совсем иссяк… Что случилось? Закончилась вода в башне…


Время, которое потребуется, чтобы опустошить башню, зависит от емкости самой башни, а также от того, сколько потребителей будут пользоваться водой.

Все то же самое можно сказать и про радиоэлемент конденсатор :

Допустим мы его зарядили от батарейки 1,5 вольта и он принял заряд. Нарисуем заряженный конденсатор вот так:

Но как только мы цепляем к нему нагрузку (пусть нагрузкой будет светодиод) с помощью замыкания ключа S, в первые доли секунд светодиод будет светиться ярко, а потом тихонько угасать… и пока полностью не потухнет. Время угасания светодиода будет зависеть от емкости конденсатора, а также от того, какую нагрузку мы цепляем к заряженному конденсатору.

Как я уже сказал, это равносильно простой наполненной башне и потребителям, которые пользуются водой.

Но почему тогда в наших башнях вода никогда не заканчивается? Да потому что работает насос подачи воды ! А откуда этот насос берет воду? Из скважины, которая пробурена для добычи подземных вод. Иногда ее еще называют артезианской.


Как только башня полностью наполнится водой, насос выключается. В наших водобашнях насос всегда поддерживает максимальный уровень воды.

Итак, давайте вспомним, что такое напряжение ? По аналогии с гидравликой – это уровень воды в водобашне. Полная башня – это максимальный уровень воды, значит максимальное напряжение. Нет в башне воды – напряжение ноль.

ЭДС электрического тока

Как вы помните из прошлых статей, молекулы воды – это “электроны”. Для возникновения электрического тока, электроны должны двигаться в одном направлении. Но чтобы они двигались в одном направлении, должно быть напряжение и какая-нибудь нагрузка. То есть вода в башне – это напряжение, а люди, которые тратят воду для своих нужд – это нагрузка, так как они создают поток воды из трубы, которая находится у подножия водобашни. А поток – это не что иное, как сила тока.

Также должно соблюдаться условие, что вода должна всегда быть на максимальной отметке, независимо от того, сколько людей тратит ее для своих нужд одновременно, иначе башня опустошится. Для водобашни этим спасительным средством является водонасос. А для электрического тока?

Для электрического тока должна быть какая-то сила, которая бы толкала электроны в одном направлении в течение продолжительного времени. То есть эта сила должна двигать электроны! Электродвижущая сила! Да, именно так! ЭЛЕКТРОДВИЖУЩАЯ СИЛА! Можно назвать ее сокращенно ЭДС – Э лектро Д вижущая С ила. Измеряется она в вольтах, как и напряжение, и обозначается в основном буквой E .

Значит, в наших батарейках тоже есть такой “насос”? Есть, и правильней было бы его назвать “насос подачи электронов”). Но, конечно, так никто не говорит. Говорят просто – ЭДС. Интересно, а где спрятан этот насос в батарейке? Это просто-напросто электрохимическая реакция, из-за которой держится “уровень воды” в батарейке, но потом все-таки этот насос изнашивается и напряжение в батарейке начинает проседать, потому как “насос” не успевает качать воду. В конце концов он полностью ломается и напряжение на батарейке стает практически ноль.

Реальный источник ЭДС

Источник электрической энергии – это источник ЭДС с внутренним сопротивлением R вн. Это могут быть какие-либо химические элементы питания, наподобие батареек и аккумуляторов


Их внутреннее строение с точки зрения ЭДС выглядит примерно вот так:


Где E – это ЭДС, а R вн – это внутреннее сопротивление батарейки

Итак, какие выводы можно сделать из этого?

Если к батарейке не цепляется никакая нагрузка, типа лампы накаливания и тд, то в результате сила тока в такой цепи будет равняться нулю. Упрощенная схема будет такой:


Но если мы все-таки присоединим к нашей батарейке лампочку накаливания, то у нас цепь станет замкнутой и в цепи будет течь ток:

Если начертить график зависимости силы в цепи тока от напряжения на батарейке, то он будет выглядеть вот так:


Какой напрашивается вывод? Для того, чтобы замерить ЭДС батарейки, нам достаточно просто взять хороший мультиметр с высоким входным сопротивлением и замерять напряжение на клеммах батарейки.

Идеальный источник ЭДС

Допустим, пусть наша батарейка обладает нулевым внутренним сопротивлением, тогда получается, что R вн =0.

Нетрудно догадаться, что в этом случае падение напряжение на нулевом сопротивлении также будет равняться нулю. В результате, наш график примет вот такой вид:


В результате мы получили просто источник ЭДС. Следовательно, источник ЭДС – это идеальный источник питания, у которого напряжение на клеммах не зависит от силы тока в цепи. То есть, какую нагрузку мы бы не цепляли на такой источник ЭДС, у нас он все равно будет выдавать положенное напряжение без просадки. Сам источник ЭДС обозначается вот так:

На практике идеального источника ЭДС не существует.

Типы ЭДС

электрохимическая (ЭДС батареек и аккумуляторов)

фотоэффекта (получение электрического тока от солнечной энергии)

индукции (генераторы, использующие принцип электромагнитной индукции)

Эффект Зеебека или термоЭДС (возникновение электрического тока в замкнутой цепи, состоящей из последовательно соединённых разнородных проводников , контакты между которыми находятся при различных температурах)

пьезоЭДС (получение ЭДС от )

Для поддержания электрического тока в проводнике требуется внешний источник энергии, создающий все время разность потенциалов между концами этого проводника. Такие источники энергии получили название источников электрической энергии (или источников тока).

Источники электрической энергии обладают определенной электродвижущей силой (сокращенно ЭДС ), которая создает и длительное время поддерживает разность потенциалов между концами проводника. Иногда говорят, что ЭДС создает электрический ток в цепи. Нужно помнить об условности такого определения, так как выше мы уже установили, что причина возникновения и существования электрического тока - электрическое поле.

Источник электрической энергии производит определенную работу, перемещая электрические заряды по всей замкнутой цепи..

Определение: Работа, совершаемая источником электрической энергии при переносе единицы положительного заряда по всей замкнутой цепи, называется ЭДС источника

За единицу измерения электродвижущей силы принят вольт (сокращенно вольт обозначается буквой В или V - «вэ» латинское).

ЭДС источника электрической энергии равна одному вольту, если при перемещении одного кулона электричества по всей замкнутой, цепи источник электрической энергии совершает работу, равную одному джоулю:

В практике для измерения ЭДС используются как более крупные, так и более мелкие единицы, а именно:

1 киловольт (кВ, kV), равный 1000 В;

1 милливольт (мВ, mV), равный одной тысячной доле вольта (10-3 В),

1 микровольт (мкВ, μV), равный одной миллионной доле вольта (10-6 В).

Очевидно, что 1 кВ = 1000 В; 1 В = 1000 мВ = 1 000 000 мкВ; 1 мВ= 1000 мкВ.

В настоящее, время существует несколько видов источников электрической энергии. Впервые в качестве источника электрической энергии была использована гальваническая батарея, состоящая из нескольких цинковых и медных кружков, между которыми была проложена кожа, смоченная в подкисленной воде. В гальванической батарее химическая энергия превращалась в электрическую (подробнее об этом будет рассказано в главе XVI). Свое название гальваническая батарея получила по имени итальянского физиолога Луиджи Гальвани (1737-1798), одного из основателей учения об электричестве.

Многочисленные опыты по усовершенствованию и практическому использованию гальванических батарей были проведены русским ученым Василием Владимировичем Петровым. Еще в начале прошлого века он создал самую большую в мире гальваническую батарею и использовал ее для ряда блестящих опытов.

Источники электрической энергии, работающие по принципу преобразования химической энергии в электрическую, называются химическими источниками электрической энергии.

Другим основным источником электрической энергий, получившим широкое применение в электротехнике и радиотехнике, является генератор. В генераторах механическая энергия преобразуется в электрическую.

На электрических схемах источники электрической энергии и генераторы обозначаются так, как это показано на рис. 1.

Рисунок 1. Условные обозначения источников электрической энергии: а - источник ЭДС, общее обозначение, б - источник тока, общее обозначение; в - химический источник электрической энергии; г - батарея химических источников; д - источник потоянного напряжения; е - источник переменного нарияжения; ж - генератор.

У химических источников электрической энергии и у генераторов электродвижущая сила проявляется одинаково, создавая на зажимах источника разность потенциалов и поддерживая ее длительное время. Эти зажимы называются полюсами источника электрической энергии . Один полюс источника электрической энергии имеет положительный потенциал (недостаток электронов), обозначается знаком плюс (+) и называется положительным полюсом. Другой полюс имеет отрицательный потенциал (избыток электронов), обозначается знаком минус (-) и называется отрицательным полюсом.

От источников электрической энергии электрическая энергия передается по проводам к ее потребителям (электрические лампы, электродвигатели, электрические дуги, электронагревательные приборы и т. д.).

Определение : Совокупность источника электрической энергии, ее потребителя и соединительных проводов называется электрической цепью.

Простейшая электрическая цепь показана на рис. 2.

Рисунок 2. Б - источник электрической энергии; SA - выключатель; EL - потребитель электрической энергии (лампа).

Для того чтобы по цепи проходил электрический ток, она должна быть замкнутой. По замкнутой электрической цепи непрерывно проходит ток, так как между полюсами источника электрической энергии существует некоторая разность потенциалов. Эта разность потенциалов называется напряжением источника и обозначается буквой U . Единицей измерения напряжения служит вольт. Так же как и ЭДС, напряжение может измеряться в киловольтах, милливольтах и микровольтах.

Для измерения величины ЭДС и напряжения применяется прибор, называемый вольтметром . Если вольтметр подключить непосредственно к полюсам источника электрической энергии, то при разомкнутой электрической цепи он покажет ЭДС источника электрической энергии, а при замкнутой - напряжение на его зажимах: (рис. 3).

Рисунок 3. Измерение ЭДС и напряжения источника электрической энергии: а- измерение ЭДС источника электрической энергии; б - измерение напряжения на зажимах источника электрической энергии..

Заметим, что напряжение на зажимах источника электрической энергии всегда меньше его ЭДС.

Содержание:

Когда родилось понятие «электрон», люди сразу связали его с определенной работой. Электрон – это по-гречески «янтарь». То, что грекам для того, чтобы найти этот бесполезный, в общем-то, магический камушек, надо было довольно далеко проехать на север - такие усилия тут, в общем-то, не в счет. А вот стоило проделать некоторую работу - руками по натиранию камушка о шерстяную сухую тряпочку - и он приобретал новые свойства. Это знали все. Натереть просто так, ради сугубо бескорыстного интереса, чтобы понаблюдать, как теперь к «электрону» начинает притягиваться мелкий мусор: пылинки, шерстинки, ниточки, перышки. В дальнейшем, когда появился целый класс явлений, объединенных потом в понятие «электричество», работа, которую надо обязательно затратить, не давала людям покоя. Раз нужно затратить, чтобы получился фокус с пылинками - значит, хорошо бы эту работу как-то сохранить, накопить, а потом и получить обратно.

Таким образом из все более усложнявшихся фокусов с разными материалами и философских рассуждений и научились эту магическую силу собирать в баночку. А потом сделать и так, чтобы она из баночки постепенно высвобождалась, вызывая действия, которые стало уже можно ощутить, а очень скоро и померить. И померили настолько остроумно, имея всего-то пару шелковых шариков или палочек и пружинные крутильные весы, что и теперь мы вполне серьезно пользуемся все теми же формулами для расчетов электрических цепей, которые уже пронизали теперь всю планету, бесконечно сложных, сравнительно с теми первыми приспособлениями.

А название этого могучего джинна, сидящего в баночке, так до сих пор и содержит восторг давних открывателей: «Электродвижущая сила». Но только сила эта - совсем не электрическая. А наоборот, посторонняя страшная сила, заставляющая электрические заряды двигаться «против воли», то есть преодолевая взаимное отталкивание, и собираться где-то с одной стороны. От этого получается разность потенциалов. Ее и можно использовать, пустив заряды другим путем. Где их «не сторожит» эта страшная ЭДС. И заставить, тем самым, выполнить некоторую работу.

Принцип работы

ЭДС - это сила самой разной природы, хотя измеряется она в вольтах:

  • Химической. Происходит от процессов химического замещения ионов одних металлов ионами других (более активных). В результате образуются лишние электроны, стремящиеся «спастись» на краю ближайшего проводника. Такой процесс бывает обратимым или необратимым. Обратимый - в аккумуляторах. Их можно зарядить, вернув заряженные ионы обратно в раствор, отчего он приобретет больше, например, кислотности (в кислотных аккумуляторах). Кислотность электролита и есть причина ЭДС аккумулятора, работает непрерывно, пока раствор не станет абсолютно нейтральным химически.

  • Магнитодинамической. Возникает при воздействии на проводник, некоторым образом ориентированный в пространстве, изменяющегося магнитного поля. Или от магнита, движущегося относительно проводника, или от движения проводника относительно магнитного поля. Электроны в этом случае тоже стремятся двигаться в проводнике, что позволяет их улавливать и помещать на выходные контакты устройства, создавая разность потенциалов.

  • Электромагнитной. Переменное магнитное поле создается в магнитном материале переменным электрическим напряжением первичной обмотки. Во вторичной обмотке возникает движение электронов, а значит и напряжение, пропорциональное напряжению в первичной обмотке. Значком ЭДС трансформаторы могут обозначаться в схемах эквивалентного замещения.

  • Фотоэлектрической. Свет, попадая на некоторые проводящие материалы, способен выбивать электроны, то есть делать их свободными. Создается избыток этих частиц, отчего лишние выталкиваются к одному из электродов (аноду). Возникает напряжение, которое и способно породить электрический ток. Такие приборы называются фотоэлементами. Первоначально были придуманы вакуумные фотоэлементы, в которых электроды были установлены в колбе с вакуумом. Электроны в этом случае выталкивались за пределы металлической пластинки (катод), а улавливались другим электродом (анод). Такие фотоэлементы нашли применение в датчиках света. С изобретением же более практичных полупроводниковых фотоэлементов стало возможным создавать из них мощные батареи, чтобы суммированием электродвижущей силы каждого из них вырабатывать существенное напряжение.

  • Теплоэлектрической. Если два разных металла или полупроводника спаять в одной точке, а потом в эту точку доставить тепло, например, свечи, то на противоположных концах пары металлов (термопары) возникает разница в плотностях электронного газа. Эта разница может накапливаться, если соединить термопары последовательной цепочкой, подобно соединению гальванических элементов в батарее или отдельных фотоэлементов в солнечной батарее. ТермоЭДС используется в очень точных датчиках температуры. С этим явлением связано несколько эффектов (Пельтье, Томсона, Зеебека), которые успешно исследуются. Фактом является то, что теплота способна непосредственно превратиться в электродвижущую силу, то есть напряжение.

  • Электростатической. Такие источники ЭДС были придуманы практически одновременно с гальваническими элементами или даже раньше (если считать натирание янтаря шелком нормальным производством ЭДС). Они еще называются электрофорными машинами, или, по имени изобретателя, генераторами Вимшурста. Хотя Вимшурст создал внятное техническое решение, позволяющее снятый потенциал накапливать в лейденской банке - первом конденсаторе (причем, хорошей емкости). Первой же электрофорной машиной можно считать огромный шар из серы, насаженный на ось, - аппарат магдебургского бургомистра Отто фон Герике в середине XVII века. Принцип работы - натирание легко электризующихся от трения материалов. Правда прогресс у фон Герике можно назвать, по поговорке, движимым ленью, когда нет охоты натирать янтарь или что-то другое вручную. Хотя, конечно, этому любознательному политику чего-чего, а фантазии и активности было не занимать. Вспомним хотя бы его же всем известный опыт с разрыванием двумя вереницами ослов (или мулов) шара без воздуха за цепи на два полушария.

Электризация, как первоначально предполагали, происходит именно от «трения», то есть, натирая янтарь тряпкой, мы «срываем» с его поверхности электроны. Однако исследования показали, что здесь не так все просто. Оказывается, на поверхности диэлектриков всегда имеются неравномерности заряда, и к этим неравномерностям притягиваются ионы из воздуха. Образуется такая воздушно-ионная шуба, которую мы и повреждаем, натирая поверхность.

  • Термоэмиссионной. При нагревании металлов с их поверхности срываются электроны. В вакууме они достигают другого электрода и наводят там отрицательный потенциал. Очень перспективное сейчас направление. На рисунке приведена схема защиты гиперзвукового летательного аппарата от перегрева частей корпуса встречным потоком воздуха, причем термоэлектроны, испускаемые катодом (который при этом охлаждается - одновременное действие эффектов Пельтье и/или Томсона), достигают анода, наводя на нем заряд. Заряд, вернее, напряжение, которое равно полученной ЭДС, можно использовать в цепи потребления внутри аппарата.

1 - катод, 2 - анод, 3, 4 - отводы катода и анода, 5 - потребитель

  • Пьезоэлектрической. Многие кристаллические диэлектрики, когда испытывают механическое давление на себя в каком-либо направлении, реагируют на него наведением разницы потенциалов между своими поверхностями. Эта разность зависит от приложенного давления, поэтому уже используется в датчиках давления. Пьезоэлектрические зажигалки для газовых плит не требуют никакого другого источника энергии - только нажатия пальцем на кнопочку. Известны попытки создания пьезоэлектрической системы зажигания в автомобилях на основе пьезокерамики, получающей давление от системы кулачков, связанных с главным валом двигателя. «Хорошие» пьезоэлектрики - у которых пропорциональность ЭДС от давления высоко точна - бывают очень тверды (например, кварц), при механическом давлении почти не деформируются.

  • Однако долгое воздействие давлением на них вызывает их разрушение. В природе мощные слои каменных пород также являются пьезоэлектриками, давления земных толщ наводят громадные заряды на их поверхностях, что порождает в глубинах земли титанические бури и грозы. Однако, не все так страшно.Уже были разработаны и эластичные пьезоэлектрики, и даже уже началось изготовление на их основе (и на основе нанотехнологий) изделий, идущих на продажу.

То, что единицей измерения ЭДС является единица электрического напряжения, понятно. Так как самые разнородные механизмы, создающие электродвижущую силу источника тока, все преобразуют свои виды энергии в движение и накопление электронов, а это в конечном счете и приводит к появлению такого напряжения.

Ток, возникающий от ЭДС

Электродвижущая сила источника тока на то и движущая сила, что электроны от нее начинают двигаться, если замкнуть электрическую цепь. Их к этому принуждает ЭДС, пользуясь своей неэлектрической «половиной» природы, которая не зависит, все-таки, от половины, связанной с электронами. Так как считается, что ток в цепи течет от плюса к минусу (такое определение направления было сделано раньше, чем все узнали, что электрон - отрицательная частица), то внутри прибора с ЭДС ток делает движение завершающее - от минуса к плюсу. И всегда рисуют у знака ЭДС, куда направлена стрелочка – +. Только в обоих случаях - и внутри ЭДС источника тока, и снаружи, то есть в потребляющей цепи, - мы имеем дело с электрическим током со всеми его обязательными свойствами. В проводниках ток наталкивается на их сопротивление. И здесь, в первой половине цикла, имеем сопротивление нагрузки, во второй, внутренней, - сопротивление источника или внутреннее сопротивление.

Внутренний процесс работает не мгновенно (хотя очень быстро), а с определенной интенсивностью. Он совершает работу по доставке зарядов от минуса к плюсу, и это тоже встречает сопротивление…

Сопротивление это двоякого рода.

  1. Внутреннее сопротивление работает против сил, разъединяющих заряды, оно имеет природу, «близкую» этим разъединяющим силам. По крайней мере, работает с ними в едином механизме. Например, кислота, отбирающая кислород у двуокиси свинца и замещающая его на ионы SO 4 -, определенно испытывает некоторое химическое сопротивление. И это как раз и проявляется как работа внутреннего сопротивления аккумулятора.
  2. Когда наружная (выходная) половина цепи не замкнута, появление все новых и новых электронов на одном из полюсов (и убывание их с другого полюса) вызывает усиление напряженности электростатического поля на полюсах аккумулятора и усиление отталкивания между электронами. Что позволяет системе «не идти вразнос» и остановиться на некотором состоянии насыщенности. Больше электронов из аккумулятора наружу не принимается. И это внешне выглядит как наличие постоянного электрического напряжения между клеммами аккумулятора, которое называется U хх, напряжением холостого хода. И оно численно равно ЭДС - электродвижущей силе. Поэтому и единицей измерения ЭДС является вольт (в системе СИ).

Но если только подключить к аккумулятору нагрузку из проводников, имеющих отличное от нуля сопротивление, то немедленно потечет ток, сила которого определяется по закону Ома.

Померить внутреннее сопротивление источника ЭДС, казалось бы, можно. Стоит включить в цепь амперметр и шунтировать (закоротить) внешнее сопротивление. Однако внутреннее сопротивление настолько низко, что аккумулятор начнет разряжаться катастрофически, вырабатывая огромное количество теплоты, как на внешних закороченных проводниках, так и во внутреннем пространстве источника.

Однако можно поступить иначе:

  1. Измерить E (помним, напряжение холостого хода, единица измерения - вольт).
  2. Подключить в качестве нагрузки некоторый резистор и померить падение напряжения на нем. Вычислить ток I 1 .
  3. Вычислить значение внутреннего сопротивления источника ЭДС можно, воспользовавшись выражением для r

Обычно способность аккумулятора выдавать электроэнергию оценивается его энергетической «емкостью» в амперчасах. Но интересно было бы посмотреть, какой максимальный ток он может вырабатывать. Несмотря на то, что, быть может, электродвижущая сила источника тока заставит его взорваться. Так как идея устроить на нем короткое замыкание показалась не очень заманчивой, можно вычислить эту величину чисто теоретически. ЭДС равно U хх. Просто нужно дорисовать график зависимости падения напряжения на резисторе от тока (следовательно, и от сопротивления нагрузки) до точки, в которой сопротивление нагрузки будет равно нулю. Это точка I кз , пересечения красной линии с линией координаты I , в которой напряжение U стало нулевым, а все напряжение E источника будет падать на внутреннее сопротивление.

Часто кажущие простыми основные понятия не всегда бывает можно понять без привлечения примеров и аналогий. Что такое электродвижущая сила, и как она работает, можно представить, только рассмотрев множество ее проявлений. А стоит рассмотреть определение ЭДС, как оно дается солидными источниками посредством умных академических слов - и все начинай с начала: электродвижущая сила источника тока. Или просто выбей на стене золотыми буквами:

Что такое ЭДС (электродвижущая сила) в физике? Электрический ток понятен далеко не каждому. Как космическая даль, только под самым носом. Вообще, он и ученым понятен не до конца. Достаточно вспомнить с его знаменитыми экспериментами, на века опередившими свое время и даже в наши дни остающимися в ореоле тайны. Сегодня мы не разгадываем больших тайн, но пытаемся разобраться в том, что такое ЭДС в физике .

Определение ЭДС в физике

ЭДС – электродвижущая сила. Обозначается буквой E или маленькой греческой буквой эпсилон.

Электродвижущая сила - скалярная физическая величина, характеризующая работу сторонних сил (сил неэлектрического происхождения ), действующих в электрических цепях переменного и постоянного тока.

ЭДС , как и напряжени е, измеряется в вольтах. Однако ЭДС и напряжение – явления разные.

Напряжение (между точками А и Б) – физическая величина, равная работе эффективного электрического поля, совершаемой при переносе единичного пробного заряда из одной точки в другую.

Объясняем суть ЭДС "на пальцах"

Чтобы разобраться в том, что есть что, можно привести пример-аналогию. Представим, что у нас есть водонапорная башня, полностью заполненная водой. Сравним эту башню с батарейкой.

Вода оказывает максимальное давление на дно башни, когда башня заполнена полностью. Соответственно, чем меньше воды в башне, тем слабее давление и напор вытекающей из крана воды. Если открыть кран, вода будет постепенно вытекать сначала под сильным напором, а потом все медленнее, пока напор не ослабнет совсем. Здесь напряжение – это то давление, которое вода оказывает на дно. За уровень нулевого напряжения примем само дно башни.

То же самое и с батарейкой. Сначала мы включаем наш источник тока (батарейку) в цепь, замыкая ее. Пусть это будут часы или фонарик. Пока уровень напряжения достаточный и батарейка не разрядилась, фонарик светит ярко, затем постепенно гаснет, пока не потухнет совсем.

Но как сделать так, чтобы напор не иссякал? Иными словами, как поддерживать в башне постоянный уровень воды, а на полюсах источника тока – постоянную разность потенциалов. По примеру башни ЭДС представляется как бы насосом, который обеспечивает приток в башню новой воды.

Природа ЭДС

Причина возникновения ЭДС в разных источниках тока разная. По природе возникновения различают следующие типы:

  • Химическая ЭДС. Возникает в батарейках и аккумуляторах вследствие химических реакций.
  • Термо ЭДС. Возникает, когда находящиеся при разных температурах контакты разнородных проводников соединены.
  • ЭДС индукции. Возникает в генераторе при помещении вращающегося проводника в магнитное поле. ЭДС будет наводиться в проводнике, когда проводник пересекает силовые линии постоянного магнитного поля или когда магнитное поле изменяется по величине.
  • Фотоэлектрическая ЭДС. Возникновению этой ЭДС способствует явление внешнего или внутреннего фотоэффекта.
  • Пьезоэлектрическая ЭДС. ЭДС возникает при растяжении или сдавливании веществ.

Дорогие друзья, сегодня мы рассмотрели тему «ЭДС для чайников». Как видим, ЭДС – сила неэлектрического происхождения , которая поддерживает протекание электрического тока в цепи. Если Вы хотите узнать, как решаются задачи с ЭДС, советуем обратиться к – скрупулезно отобранным и проверенным специалистам, которые быстро и доходчиво разъяснят ход решения любой тематической задачи. И по традиции в конце предлагаем Вам посмотреть обучающее видео. Приятного просмотра и успехов в учебе!

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Гречка с фаршем рецепт на сковороде Гречка с фаршем и овощами на сковороде Гречка с фаршем рецепт на сковороде Гречка с фаршем и овощами на сковороде Профессия Проходчик.  Кто такой Проходчик. Описание профессии. Вакансии проходчика для работы вахтой Проходчик профессия Профессия Проходчик. Кто такой Проходчик. Описание профессии. Вакансии проходчика для работы вахтой Проходчик профессия «Из тьмы веков» Идрис Базоркин Из тьмы веков читать «Из тьмы веков» Идрис Базоркин Из тьмы веков читать