Принцип газовой хроматографии. Газовая хроматография

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Хроматографический анализ растворенных газов (ХАРГ) - один из методов оценки состояния трансформатора на основании анализа трансформаторного масла. Он применяется в качестве средства ранней диагностики развивающихся дефектов оборудования. Современные технические средства позволяют вести мониторинг без привлечения специального лабораторного оборудования. Приборы выполняют отбор проб непрерывно, что дает возможность проследить за динамикой неполадок и вовремя принять соответствующие меры.

К типичным газам, образующимся из минерального масла и целлюлозы (бумаги и картона) в трансформаторах, относятся:

Водород (Н₂);

Метан (CH₄);

Этан (C₂H₆);

Этилен (C₂H₄);

Ацетилен (С₂Н₂);

Угарный газ (CO);

Углекислый газ (CO₂).

Дополнительно всегда присутствуют кислород и азот, а их концентрация изменяется в зависимости от герметичности корпуса трансформатора.

Дефекты трансформаторов, определяемые с помощью хроматографического анализа растворенных газов

Процедура ХАРГ позволяет выявить содержание различных веществ в масляной смеси. Исходя из их количества можно сделать выводы о тех или иных неполадках. Приведем примеры взаимосвязи превышения концентрации газов, растворенных в трансформаторе, и наиболее характерных дефектов:

  • водород (H 2) - частичные, искровые, дуговые разряды;
  • метан (CH 4) - дефекты термического характера, связанные с перегревом масла и изоляции в диапазоне 400–600 градусов Цельсия;
  • этан (C 2 H 6) - аналогичные неполадки, но при температуре до 400 градусов Цельсия;
  • этилен (C 2 H 4) - перегрев свыше 600 градусов;
  • ацетилен (С 2 Н 2) - возникновение электрической дуги, искрения;
  • угарный газ (CO) и углекислый газ (СО 2) - старение и возникновение влаги на твердой изоляции или в масле.

Некоторые газы, растворенные в трансформаторе (этилен и ацетилен), также могут свидетельствовать о перегреве контактов переключающих устройств, нагреве места крепления электростатического экрана и шпильки проходного изолятора, замыкании проводников обмотки и других дефектах.

Оборудование для проведения хроматографического анализа растворенных газов

Современные приборы не требуют отправки проб в лабораторию. Хроматографы обеспечивают непрерывный онлайн-мониторинг, отбирая пробы с заданной периодичностью. Большинство современных приспособлений, в том числе марки Serveron, обладают следующими функциями и особенностями:

  • измерение содержания основных газов (включая водород, кислород, углекислый газ, метан, азот и другие);
  • погрешность не более 5 %;
  • измерение содержания влаги в масле;
  • определение температуры среды;
  • отбор проб с периодичностью от 2 до 24 часов, автоматический переход на учащенный анализ при возникновении превышений концентрации;
  • функция автоматической калибровки;
  • экспертное программное обеспечение;
  • минимальная требовательность к обслуживанию.

Конструктивно оборудование для хроматографического анализа растворенных газов представляет собой систему трубок, пробоотборное устройство и электронный аналитический блок. Пробоотборное устройство и аналитический блок заключены в единый корпус.

1. Описание инструментов АРГ, которые применяются в хроматографах Serveron - треугольник/пятиугольник Дюваля, коэффициенты Роджерса.

Приборы для хроматографического анализа растворенных газов, предлагаемые на сайте компании «БО-ЭНЕРГО», имеют необходимые сертификаты и соответствуют отраслевым требованиям. Они работают по термокондуктометрическому принципу - измеряют теплопроводность газа и носителя, определяя разницу между показателями.

Преимущества онлайн - хроматографического анализа растворенных газов

Метод позволяет непрерывно контролировать концентрации газов, растворенных в трансформаторном масле. Визуализацию и интерпретацию результатов измерений можно проводить без привлечения сторонних специалистов. Программное обеспечение, поставляемое в комплекте с оборудованием, позволяет получить полную диагностическую информацию о состоянии трансформатора.

Преимущества хроматографического онлайн-анализа растворенных газов и лабораторного ХАРГ.

  • Лабораторные измерения АРГ обычно проводятся один раз в год или в два года.
  • Большинство отказов происходит неожиданно и за относительно короткий промежуток времени (несколько дней или даже часов) с незначительными предпосылками или вообще без них.
  • Онлайн-АРГ позволяет выявить как постепенные, так и резкие изменения тенденций содержания всех газов.
  • Выявляет связь газовых аномалий с внешними параметрами и событиями, такими как нагрузка на трансформатор, температура масла, изменение состояния переключателя отводов под нагрузкой и т. д.

Пример сравнения тренда

Рис.1 Сравнение тренда измеряемого газосодержания этана и данных химической лаборатории

Газовая хроматография - метод анализа, получивший очень хорошую теоретическую разработку. Именно тщательная проработка его теоретических и практических основ способствовала в последние десятилетия быстрому развитию этой методики.

Известно, что газовая хроматография отличается от других подобных методов тем, что в ней в качестве подвижной фазы используется газ. Неподвижная фаза может быть твердым веществом или жидкостью. В зависимости от этого говорят о газо-адсорбционной или газо-жидкостной хроматографии.

Разделение смесей веществ в таких устройствах, как хроматограф газовый, происходит за счет многократного повторения процесса распределения компонентов между неподвижной жидкой или твердой фазой и движущейся газовой. В основе процесса разделения лежит различие в летучести и растворимости анализируемых веществ. Тот компонент, летучесть которого при данной температуре больше, а растворимость неподвижной фазы меньше, будет двигаться через колонку быстрее.

Использование газа в качестве подвижного носителя позволяет получить такие преимущества, как четкость разделения составляющих веществ и быстрота проведения анализа. Исследуемая проба вводится в колонку в газообразном виде или в виде пара. С помощью этого метода можно анализировать не только газы, но и жидкие, и которые переводят в необходимое состояние нагреванием. В связи с этим в газовой хроматографии температура, при которой происходит весь процесс, играет очень важную роль. Пределы рабочих показателей для газо-адсорбционного метода анализа колеблются от 70 до 600°С, а для газо-жидкостного - от 20 до 400°С. Промышленностью выпускается газовый хроматограф, который позволяет заранее программировать температуру.

Этот метод дает возможность анализировать вещества, которых меньше 400. Они при испарении не разлагаются, а при последующей конденсации не меняют свой состав.

В основном в аналитической практике применяют газо-жидкостную хроматографию. По сравнению с газо-адсорбционной она имеет некоторые преимущества, которые связаны в основном с широким выбором возможных неподвижных жидких фаз, а также с высокой чистотой и, что достаточно важно, с однородностью жидкостей.

Газовая хроматография - это экспресс-метод, отличающийся высокой точностью, чувствительностью и возможностью автоматизации. Универсальность и гибкость данного способа определяет используемое в том или ином случае устройство. Газовая хроматография, применяющаяся для дает однозначные результаты, которые не вызывают сомнений.

Этот метод позволяет решать многие аналитические проблемы, разделять и определять соотношение соединений с минимальной разницей в давлении пара. Способ газовой хроматографии используется для очистки химических препаратов, расщепления смесей на отдельные компоненты. Он особенно эффективен при разделении близких по составу веществ, которые относятся к одному классу: органическим кислотам, спиртам, углеводородам.

А.Дж. Мартин и Р.Л. Синг впервые в 1941 г. предсказали возможность осуществления газожидкостной хроматографии. В 1949 г. Н.М. Туркельтауб описал хроматографическое разделение газов. Основы метода газовой хроматографии были разработаны в 1952г. А.Дж. Мартином.

Сущность метода ГЖХ (газожидкостной хроматографии) состоит в следующем. Анализируемая смесь (обычно - раствор) летучих компонентов переводится в парообразное состояние и смешивается с потоком инертного газа-носителя, образуя с ним подвижную фазу (ПФ). Эта смесь проталкивается с новой порцией непрерывно подаваемого газа-носителя и попадает в хроматографическую колонку, заполненную неподвижной (стационарной) жидкой фазой (НФ). Разделяемые компоненты распределяются между ПФ и НФ в соответствии с их коэффициентом распределения D , определяемым формулой:

D=C(НФ)/С(ПФ)

где: С(НФ) и С(ПФ) - соответственно содержание (в г/мл) данного компонента в неподвижной и подвижной фазах, находящихся в динамическом равновесии. Равновесный обмен хроматографируемого вещества между НФ и ПФ осуществляется в результате многократного повторения актов сорбция- десорбция по мере движения ПФ вдоль НФ внутри хроматографической колонки. Хроматографирование проводят на газовых (газожидкостных) хроматографах различной конструкции. На рис. 1 показана принципиальная блок-схема газового хроматографа.

Поток газа-носителя (азот, гелий, аргон, водород) из баллона 1через редуктор поступает под некоторым давлением в блок подготовки газов 2, с помощью которого измеряются давление и скорость потока газа-носителя. В испаритель 3, температура которого поддерживается достаточной для быстрого испарения смеси, с помощью микрошприца вводится анализируемая проба в хроматографическую колонку 5, которая находится в термостате 4. Газ-носитель увлекает с собой разделяемую парообразную смесь вдоль хроматографической колонки, так что процессы сорбция- десорбция разделяемых компонентов повторяются многократно, причем каждый раз в системе устанавливается динамическое равновесие разделяемых веществ между ПФ и НФ . Эти многократные переходы разделяемых веществ из ПФ в НФ и обратно совершаются по всей длине хроматографической колонки до тех пор, пока пары разделяемых веществ не покинут колонку, вместе с газом-носителем. После разделения смеси на зоны компонентов последние поступают в детектор 6, в котором генерируется сигнал, усиливаемый усилителем 7 и преобразуемый регистратором 8 в виде записи хроматограммы на бумаге самописца. Поскольку сродство различных разделяемых веществ к НФ различно, то в процессе сорбционных - десорбционных переходов они задерживаются в НФ неодинаковое время, т.к. возникает разность хода. Чем выше температура кипения и относительная растворимость вещества в НФ, т.е. чем больше его коэффициент распределения, тем дольше оно находится в НФ , тем позже покидает хроматографическую колонку. В конце концов, из хроматографической колонки вместе с газом-носителем выходят зоны (объемы) парообразных хроматографируемых веществ, разделяемых полностью или частично.

Если для двух компонентов смеси коэффициенты распределения одинаковы, то они не разделяются. Если же их коэффициенты распределения различны, то разделение происходит, причем первым покидает колонку тот компонент, у которого коэффициент распределения наименьший.

Пары разделенных компонентов вместе с газом-носителем поступают в детектор хроматографа, генерирующий электрический сигнал - тем больший, чем выше концентрация в парогазовой смеси. Электрический сигнал усиливается и фиксируется регистратором хроматографа в виде хроматограммы, записываемой на диаграммной ленте или на мониторе. Эти хроматограммы и используются для идентификации и количественной обработки результатов анализа разделяемой смеси компонентов.

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Российский государственный университет нефти и газа им. И.М.Губкина»

А.Н. Тимашев, Е.Ю. Красновидов

ХРОМАТОГРАФИЧЕСКИЙ АНАЛИЗ КОМПОНЕНТНОГО СОСТАВА ПРИРОДНЫХ ГАЗОВ

Методические указания к выполнению лабораторной работы по дисциплинам «Технология эксплуатации газовых скважин» и «Разработка и эксплуатация газовых и газоконденсатных месторождений» для студентов специальностей: РГ, РН, РБ, МБ, МО, ГР, ГИ, ГП, ГФ

Под редакцией профессора А.И. Ермолаева

Москва 2012

Хроматографический анализ компонентного состава природных газов.

Методические указания к проведению лабораторной работы/ А.Н.

Тимашев, Е.Ю. Красновидов – М.: РГУ нефти и газа имени И.М. Губкина, 2012.

Рассмотрены способы определения компонентного состава природных газов. В основу положен действующий ГОСТ 23781-87.

Методические указания предназначены для студентов нефтегазовых вузов специальностей: РГ, РН, РБ, МБ, МО, ГР, ГИ, ГП, ГФ.

Издание подготовлено на кафедре разработки и эксплуатации газовых и газоконденсатных месторождений.

Печатается по решению учебно-методической комиссии факультета разработки нефтяных и газовых месторождений.

Введение…………………………………………………………………. 4

2. Основы хроматографического метода………………………………… 5

3. Принципиальная схема газовой хроматографии……………………... 7

4. Обработка результатов…………………………………………………. 11

4.1. Метод абсолютной калибровки………………………………………... 11

4.2. Метод внутренней нормализации……………………………………... 14

5 Хроматограф «Кристаллюкс – 4000М»……………………………….. 15

6 Лабораторная работа «Определение компонентного состава газа методом хроматографии»………………………………………………. 18

Контрольные вопросы………………………………………………….. 21

Список использованной литературы…………………………………... 22

Введение

Для проектирования и контроля системы разработки месторождений и выбора технологии переработки продукции газовых и газоконденсатных скважин необходимо знать начальный состав пластового флюида и его изменение в процессе добычи.

На современном этапе развития газовой промышленности ставятся задачи как топливного использования газа, так и его применения в качестве сырья нефтехимических производств.

Контроль состава продукции скважин необходим для внесения корректив в проект разработки месторождения и технологический режим подготовки скважинной продукции, а также для выбора технологии переработки газа и конденсата.

Все перечисленные задачи могут быть решены только при знании состава продукции газовых и газоконденсатных скважин.

Природный газ газовых и газоконденсатных месторождений содержит углеводородную часть (алканы, циклоалканы, арены) и неуглеводородные компоненты (азот, аргон, гелий, сероводород, диоксид углерода и др.). Обычно углеводородная часть дается по компонентам алканов – СН4 , С2 Н6 , С3 ,Н8 , iС4 Н10 , nС4 Н10 , С5 Н12+в или до С7 Н16+в , т.е. последний компонент объединяет все высококипящие углеводороды. Неуглеводородная часть – все присутствующие в данном газе неуглеводородные компоненты азот, гелий, сероводород, диоксид углерода и др.

Состав природного газа можно определить хроматографическим методом или четкой низкотемпературной ректификацией.

2. Основы хроматографического метода

В настоящее время утвержденным в качестве государственного стандартного метода определения компонентного состава газа является хроматографический способ. Требования ГОСТ 23781-87 распространяются на природные углеводородные газы.

Хроматография – метод разделения и анализа газовых смесей,

основанный на распределение их компонентов между двумя фазами:

неподвижной и подвижной (эфлюент), протекающей через неподвижную фазу.

Российский ученый Михаил Семенович Цвет в 1903 г. показал, что при пропускании смесей растительных пигментов через слой бесцветного сорбента индивидуальные вещества располагаются в виде отдельных окрашенных зон.

Полученный послойно окрашенный столбик сорбента М.С. Цвет назвал хроматограммой, а метод физико-химического разделения смесей – хроматографией.

В дальнейшем трудами ученых различных стран разработаны различные виды хроматографии.

В зависимости от природы взаимодействия между подвижной и неподвижной фазами предложенные методы хроматографии подразделяются на распределительную, адсорбционную, ионообменную, эксклюзионную

(молекулярно-ситовую), осадочную.

Распределительная хроматография основана на разной растворимости компонентов смеси в неподвижной фазе (высококипящая жидкость, нанесенная на твердый микропористый носитель) и подвижная фаза (эфлюент).

Адсорбционная хроматография основана на различии сорбируемости разделяемых веществ адсорбентом (это твердое вещество с разветвленной системой микропор обладающее большой удельной поверхностью).

Ионообменная хроматография основана на различии констант ионообменного равновесия между неподвижной фазой (ионитом) и

компонентом разделяемой смеси.

Молекулярно-ситовая хроматография основана на разной проницаемости молекул компонентов в неподвижную фазу (высокопористый неионогенный гель).

Осадочная хроматография основана на различной способности разделяемых компонентов выпадать в осадок на твердой неподвижной фазе.

В соответствии с агрегатным состоянием подвижной фазы (эфлюента)

различают газовую и жидкостную хроматографию.

Газовая хроматография подразделяется на газо-адсорбционную

(неподвижная фаза – твердый сорбент) и газо-жидкостную (неподвижная фаза – жидкость).

Жидкостная хроматография подразделяется на жидкостно-

адсорбционную (или твердо-жидкостную) и жидкостно-жидкостную.

Последняя, как и газожидкостная, является распределительной хроматографией.

В нефтегазовой промышленности для определения состава компонентов природного газа и нефти применяются приборы на основе газо-жидкостной и газо-адсорбционной хроматографии.

Для газо-жидкостной хроматографии сорбент готовят нанесением жидкости на твердый носитель – пористый материал с удельной поверхностью

0,5 – 5 м2 /г. В качестве жидкости используют высококипящие углеводороды,

сложные эфиры и др. (например, эфир триэтиленгликольдибутират – ТЭГМ).

Толщина пленки сорбента на твердом пористом носителе составляет несколько микрон (1мкм = 10-6 м). Температура разделения смеси компонентов при газо-

жидкостной хроматографии составляет от -20 о С до 400 о С в зависимости от температуры кипения углеводородных компонентов анализируемой смеси.

Для газо-адсорбционной хроматографии в качестве сорбента для разделения неуглеводородных компонентов используются силикагели,

алюмогели, молекулярные сита, пористые полимеры и другие сорбенты с удельной поверхностью 5 – 500 м2 /г. Рабочие температуры составляют -70 о С

до 600 о С.

3. Принципиальная схема газовой хроматографии

На рисунке 1 представлена принципиальная схема газовой хроматографии, которая состоит из следующих элементов: источника инертного газа-носителя (баллон), устройства для ввода анализируемой пробы газа в поток газа-носителя, хроматографической колонки, термостата,

детектора, преобразователя сигналов, регистратора.

Перед проведением анализа хроматографическая колонка продувается инертным газом-носителем, не сорбирующемся на нанесенной на твердый пористый материал жидкости в случае газожидкостной хроматографии и твердом сорбенте в случае газоадсорбционной хроматографии. Через устройство для ввода анализируемой пробы газа в хроматографическую колонку 3 специальным дозатором вводится определенный объем исследуемого газа в поток газа-носителя. В хроматографической колонке 4, отдельно изображенной на рисунке 2, термостатом 5 поддерживается заданная постоянная температура, компоненты смеси А+Б+В анализируемого газа подвержены действию как сил сорбции, так и десорбции (смыва) газом-

носителем. Для различных компонентов силы сорбции и десорбции различны по величине.

Рисунок 1 – Принципиальная схема газового хроматографа 1 – баллон с инертным газом-носителем (эфлюент); 2 – редуктор для снижения давления

газа; 3 – устройство для ввода анализируемой пробы газа в хроматографическую колонку; 4

– хроматографическая колонка; 5 – термостат; 6 – детектор; 7 – преобразователь сигналов; 8 – регистратор

Рисунок 2 – Разделение анализируемой смеси газов (А +Б +В ) на отдельные компоненты в хроматографической колонке

Г.Н. – инертный газ-носитель; А +Б +В – анализируемая смесь

Один из них, например, компонент А будет чаще сорбироваться и десорбироваться, вследствие чего он затратит большее время на прохождение по колонке, чем другие компоненты смеси и выйдет из колонки последним.

Через некоторое время после ввода пробы исследуемого газа в колонку происходит разделение смеси на отдельные компоненты А , Б , В . Между участками с бинарным газом, т.е. отдельные компоненты исследуемого газа плюс газ-носитель находятся зоны, насыщенные только газом-носителем. Зоны с бинарным газом движутся вдоль колонки и последовательно выходят,

попадая в детектор 5 , изображенный на рисунке 1.

Детектор позволяет определить состав анализируемой смеси. Наиболее распространенными являются термокондуктометрические и ионизационные детекторы. Типичным примером первых является детектор по теплопроводности (катарометр), представляющий собой массивный

металлический блок с отверстиями, в которые помещены чувствительные

элементы, соединенные по мостовой схеме, которая изображена на рисунке 3.

Рисунок 3 – Схема детектора теплопроводности

и его подключения к регистратору

В мостовую цепь включены две ячейки для измерения теплопроводности.

В первую ячейку направляется бинарный газ, а во вторую – поток чистого газа-

носителя. Теплопроводность бинарной смеси отличается от теплопроводности чистого газа-носителя, поэтому при прохождении бинарной смеси через чувствительный элемент детектора – нагретую спираль с сопротивлением

10-80 Ом – меняется температура и сопротивление спирали в зависимости от концентрации и вида компонента. Такой детектор позволяет определять концентрацию компонентов в смеси в пределах до 10-1 – 10-2 %.

Главная часть ионизационных детекторов – ионизационная камера, в

которой происходит ионизация молекул, попадающих в нее с потоком газа-

носителя из колонки. Ионизация исследуемых веществ осуществляется в пламени водорода метастабильными атомами аргона или гелия, медленными электронами и т.д. Ионы под воздействием приложенного напряжения

5,00 10,00 15,00 20,00 25,00 30,00 35,00

время,мин.

Рисунок 4 – Хроматограмма природного газа

Максимальная концентрация отдельного компонента в бинарной смеси будет соответствовать пику на хроматограмме, который возвышается над нулевой, базовой линией.

Времена выхода отдельных компонентов отсчитываются от момента ввода пробы до момента появления вершины пика. Объемы газа-носителя,

Этот метод позволяет выявить дефекты в силовых трансформаторах, а также во вводах на ранней стадии развития.

Лабораторные исследования, проведенные в ряде стран, а также анализ спектра газов в трансформаторах и вводах позволили установить характеристические газы, специфичные для того или иного вида повреждения: водород (Н 2), углеводородные газы: метан (СН 4); этилен (С 2 Н 4); этан (С 2 Н 6), двуокись углерода (СО 2) и окись углерода (СО), ацетилен (С 2 Н 2). Таким образом, по характеристическим газам можно предположить вид развивающегося дефекта. Газоадсорбционная хроматография основана на разделении компонентов газовой смеси при помощи различных адсорбентов - пористых веществ с сильно развитой поверхностью.

Выделенные из масла газы обычно анализируются газовым хроматографом с детектором по теплопроводности.

Структурная схема хроматографической установки приведена на рис.3.4.

1 - баллон с газом-носителем; 2 - устройство для введения пробы (дозатор); 3 - разделительная колонка; 4 - детектор; 5 - регистратор; 6 - устройство для извлечения газа из масла.

Процесс газовой хроматографии состоит из двух этапов: разделение анализируемой смеси на компоненты (качественный анализ) и определение их концентраций (количественный анализ).

Анализируемая смесь газов (проба) вводится в поток газа-носителя, который с постоянной скоростью пропускается через разделительную колонку, содержащую адсорбент. Различия в физико-химических свойствах отдельных газов смеси вызывают различия в скорости их продвижения через адсорбент (пористое вещество с сильно развитой поверхностью). Поэтому на выходе разделительной колонки будут последовательно появляться составляющие анализируемой пробы (в смеси с газом-носителем). Эти составляющие имеют различную теплопроводность, что позволяет, детектором формировать соответствующие сигналы, регистрируемые специальным устройством (обычно самопишущим потенциометром).

Последовательность (время) выхода из разделительной колонки конкретных газов известна (для данных условий анализа). Это дает информацию о составе анализируемой смеси. Для получения количественных данных интегратором определяется площадь пиков хроматограммы, которая на основании данных калибровки приводится к значениям концентрации соответствующих газов. Возможности разделения компонентов газовой смеси определяются характеристиками разделительной колонки: ее наполнителем (адсорбентом), длиной и температурным режимом.

Газ-носитель должен быть инертным по отношению к анализируемым веществам и примененным адсорбентам. Он также должен обеспечивать нормальную работу детектора.

Назначение детектора состоит в преобразовании поступающих на его вход отдельных компонентов газовой смеси в электрические сигналы, которые регистрируются на ленте электронного потенциометра в виде последовательно расположенных импульсов напряжения, получивших название хроматограммы.

Принцип действия часто применяемого детектора-катарометра основан на индикации изменения теплопроводности проходящих сквозь него газов (детектор по теплопроводности). Чувствительные элементы катарометра - резисторы расположены в камерах, по которым проходит поток газов. Два рабочих резистора обтекаются газом, выходящим из разделительной колонки; два других резистора - чистым газом-носителем. Резисторы включены в мостовую измерительную схему и нагреваются протекающим по ним током. При появлении в рабочей камере компонента анализируемой смеси, который изменяет теплопроводность газа в камере, изменяются условия теплопередачи от рабочих резисторов к ее стенке. При этом изменяются сопротивления рабочих резисторов и измерительный мост разбалансируется. Напряжение на диагонали моста, соответствующее концентрации данного компонента смеси, записывается регистратором.

Анализ извлеченной смеси газов производится по методике, определяемой типом примененного хроматографа и составом контролируемых газов. Результаты анализа регистрируются на диаграммной ленте. Состав анализируемой смеси определяется по времени и последовательности появления пиков на хроматограмме. Калибровка производится или эталонной смесью газов с известной концентрацией компонентов, или по одному газу (обычно азоту или воздуху) с соответствующим пересчетом по коэффициентам чувствительности.

Методика диагностики повреждений по хроматографическому анализу растворенных в масле газов является многокритериальной:

Если анализ газов показал состояние "опасности" или "повреждений", чаще проводится хроматографический контроль;

по характеристическим газам определяют вид развивающего дефекта;

по отношению концентраций газов этот дефект уточняется;

по скорости нарастания концентрации газов за определенный промежуток времени оценивается степень опасности развивающегося дефекта и даются рекомендации.

Преимущества метода ХАРГ: позволяет обнаружить довольно широкий класс дефектов, высокая вероятность совпадения прогнозируемого и фактического дефектов. В настоящее время применяют ХАРГ вместе с измерением tgд изоляции как основные методы диагностики вводов в процессе эксплуатации.

Недостатки: отбор масла под рабочим напряжением вводов невозможен вследствие особенностей конструкций их маслоотборных устройств. Необходимость частого отбора пробы масла неприемлема, особенно для герметичных конструкций.

Малый объем масла во вводах 110-220 кВ существенно затрудняет регулярный контроль путем отбора и анализа проб масла. Полная отдача сильфонов, компенсирующих температурное изменение объема масла в конструкциях серийных вводов 110-150 кВ, составляет 1,5-2,0 л, так что после отбора пробы (0,5 л) возникает необходимость последующего трудоемкого долива масла и соответствующего дорогостоящего приспособления. Характеристика пробы масла не всегда соответствует его фактическому состоянию в оборудовании, поскольку часть примесей может не попадать в пробу.

Методика выделения газов существенно влияет на точность определения концентраций контролируемых газов. Расхождения в методике выделения нередко являются причиной значительных расхождений в результатах анализа, проведенных в разных лабораториях. Кроме того, газосодержание масла конкретного ввода и скорость его изменения зависят от большого количества факторов. К ним относятся различия конструктивных материалов, режимы нагрузки, класс напряжения и т.п. Поэтому к граничным нормам следует относиться как к величине, отражающей компромисс между желанием выявить дефекты и затратами на контроль. Высокая чувствительность метода ХАРГ увеличивает вероятность ложной отбраковки, т.к. с учетом сравнительно небольшого объема масла во вводе, позволяет обнаружить дефект, который из-за малого его развития может и не приводить к аварийному повреждению ввода.

Эффективность контроля при этом в значительной мере определяется опытом персонала. Так, в частности, нормальное состояние ввода можно констатировать и в случае превышения нормы концентрации ряда газов, если скорости изменения этих концентраций малы. Однако при скорости изменения концентрации, превышающей нормированную предельную, малое абсолютное превышение концентрации не может быть признаком отсутствия дефекта.

Необходимо также отметить о сложности и высокой стоимости хроматогра-фической установки и трудности ее наладки и освоения.

Трансформаторы напряжением 110 кВ мощностью менее 60 МВА и блочные трансформаторы собственных нужд - через 6 мес. после включения и далее не реже 1 раза в 6 мес.;

Трансформаторы напряжением 110 кВ мощностью 60 МВА и более, а также все трансформаторы 220 - 500 кВ в течение первых суток, через 1, 3 и 6 мес. после включения и далее - не реже 1 раз в 6 мес.

Трансформаторы напряжением 750 кВ - в течение первых суток, через 2 недели, 1, 3 и 6 месяцев после включения и далее - не реже 1 раза в 6 мес.

Периодичность ХАРГ для трансформаторов с развивающимися дефектами определяется динамикой изменения концентраций газов и продолжительностью развития дефектов. Все дефекты в зависимости от продолжительности развития можно подразделить на:

мгновенно развивающиеся дефекты - продолжительность развития которых имеет порядок от долей секунды до минут,

быстро развивающиеся дефекты - продолжительность развития которых имеет порядок от часов до недель,

медленно развивающиеся дефекты - продолжительность развития которых имеет порядок от месяцев до нескольких лет.

Методом хроматографического анализа растворенных в масле газов обнаруживаются медленно развивающиеся дефекты, возможно - быстро развивающиеся дефекты и нельзя определить мгновенно развивающиеся дефекты.

В случае выявления дефекта (A i >A г pi . и/или V отн i > 10% в мес.) необходимо выполнить 2-3 повторных анализа растворенных газов (с периодичностью анализов, указанных в Разделе 3) для подтверждения вида и характера дефекта и принятия решения о дальнейшей эксплуатации трансформатора и/или выводе его из работы. Где A г pi .- граничная концентрация i -го газа, %об; A i - измеренное значение концентрации i -го газа, %об;

Минимальное время повторного отбора пробы масла (T id) для проведения анализа можно рассчитать по формуле:

Т id = β * М А i / V абс i (9)

Где β -коэффициент кратности последовательных измерений (принимать b = 5); М А i - предел обнаружения в масле i -го газа, %об;

Предел обнаружения определяемых в масле газов (М А i) должен быть не выше:

Для водорода - 0,0005 %об.

Для метана, этилена, этана - 0,0001 %об.

Для ацетилена - 0,00005 %об.

Для оксида и диоксида углерода - 0,002 %об.

(Методические указания для проведения лабораторных и контрольных работ по ХАРГ)

5.1. Если в результате анализа А i

5.2. Если в результате анализа A i >A г pi и V отн i

Проанализировать условия предшествующей эксплуатации трансформатора с учетом факторов, влияющих на изменение концентраций газов в нормально работающих трансформаторах

По критериям отношений концентраций пар характерных газов (Раздел 2, Таблица 3) установить вид и характер дефекта.

Определить время повторного отбора пробы масла (Раздел 4, формула 9) и провести ХАРГ.

5.3 Если в результате выполнения операций по п. 5.2 скорость V отн i растет, то трансформатор оставить на учащенном контроле с периодичностью ХАРГ, определяемой по формуле (9).

По данным последующих результатов ХАРГ выполнить мероприятия п.п. 5.1- 5.2 и определить V отн i .

5.4 Если при выполнении анализа следующего отбора получается неравенство

A i >A г pi и V отн i > 10% в месяц, а скорость V отн i продолжает увеличиваться (быстро развивающийся дефект), то планировать вывод трансформатора из работы.

5.5.Если же при выполнении анализа сохраняется неравенствоA i >A г pi , aV отн i остается постоянной и меньше 10% в мес., то для выяснения наличия повреждения рекомендуется провести дегазацию масла и выполнить несколько последовательных анализов.

5.6. Если после проведения дегазации концентрации газов меньше соответствующих граничных значений и не увеличиваются, то это свидетельствует об отсутствии повреждения. Такой трансформатор снимается с контроля, и дальнейшая периодичность отбора проб масла устанавливается один раз в 6 мес.

5.7. Если же после проведения дегазации масла вновь наблюдается рост концентрации растворенных газов при повторных ХАРГ со скоростью:

V отн i >10% в месяц, то следует планировать вывод трансформатора из работы;

5.8 Если A i >A rpi и V отн i ≤ 0, то следует проверить влияние эксплуатационных факторов согласно Раздела 4 и при их отсутствии можно предположить, что дефект развивается "вглубь" (выгорание контактов переключающих устройств, листов магнитопровода, металлических шпилек и т.д.). В этом случае необходимо планировать вывод трансформатора из работы.

Для РПН в навесных баках в целях определения возможного перетока газов вследствие нарушения герметичности между баками контактора и трансформатора необходимо отобрать одновременно пробу масла из баков контактора и трансформатора. Примеры решения задач по результатам ХАРГ представлены в Приложении 1.

Страница 5 из 9

Хроматографический анализ газов, растворенных в трансформаторном масле

Необходимость контроля за изменением состава масла в процессе эксплуатации трансформаторов ставит вопрос о выборе такого аналитического метода, который смог бы обеспечить надежное качественное и количественное определение содержащихся в трансформаторном масле соединений. В наибольшей степени этим требованиям отвечает хроматография, представляющая собой комплексный метод, объединивший стадию разделения сложных смесей на отдельные компоненты и стадию их количественного определения. По результатам этих анализов проводится оценка состояния маслонаполненного оборудования.

Хроматографический анализ газов, растворенных в масле, позволяет выявить дефекты трансформатора на ранней стадии их развития, предполагаемый характер дефекта и степень имеющегося повреждения. Состояние трансформатора оценивается сопоставлением полученных при анализе количественных данных с граничными значениями концентрации газов и по скорости роста концентрации газов в масле. Этот анализ для трансформаторов напряжением 110 кВ и выше должен осуществляться не реже 1 раза в 6 месяцев.

Основными газами, характеризующими определенные виды дефектов в трансформаторе, являются: водород Н 2 , ацетилен С 2 Н 2 , этан С 2 Н 6 , метан СН 4 , этилен С 2 Н 4 , окись СО и двуокись СО 2 углерода.

Водород характеризует дефекты электрического характера (частичные, искровые и дуговые разряды в масле); ацетилен - перегрев активных элементов; этан - термический нагрев масла и твердой изоляции обмоток в диапазоне температур до 300°С; этилен - высокотемпературный нагрев масла и твердой изоляции обмоток выше 300°С; окись и двуокись углерода - перегрев и разряды в твердой изоляции обмоток.

С помощью анализа количества и соотношения этих газов в трансформаторном масле можно обнаружить следующие дефекты в трансформаторе.

1. Перегревы токоведущих частей и элементов конструкции магнитопровода. Основные газы: этилен или ацетилен. Характерные газы: водород, метан и этан. Если дефектом затронута твердая изоляция, заметно возрастают концентрации окиси и двуокиси водорода.

Перегрев токоведущих частей может определяться: выгоранием контактов переключающих устройств; ослаблением крепления электростатического экрана; ослаблением и нагревом контактных соединений отводов обмотки низкого напряжения или шпильки проходного изолятора ввода; лопнувшей пайкой элементов обмотки; замыканием проводников обмотки и другими дефектами.

Перегрев элементов конструкции магнитопровода может определяться: неудовлетворительной изоляцией листов электротехнической стали; нарушением изоляции стяжных шпилек, ярмовых балок с образованием короткозамкнутого контура; общим нагревом и недопустимыми местными нагревами от магнитных полей рассеяния в ярмовых балках, бандажах, прессующих кольцах; неправильным заземлением магнитопровода и другими дефектами.

2. Дефекты твердой изоляции. Эти дефекты могут быть вызваны перегревом изоляции от токоведущих частей и электрическими разрядами в изоляции. При перегреве изоляции от токоведущих частей основными газами являются окись и двуокись углерода, их отношение СО2/СО, как правило, больше 13; характерными газами с малым содержанием являются водород, метан, этилен и этан; ацетилен, как правило, отсутствует.

При разрядах в твердой изоляции основными газами являются ацетилен и водород, а характерными газами любого содержания - метан и этилен. При этом отношение СО 2 /СО, как правило, меньше 5.

3. Электрические разряды в масле. Это частичные, искровые и дуговые разряды. При частичных разрядах основным газом является водород; характерными газами с малым содержанием - метан и этилен. При искровых и дуговых разрядах основными газами являются водород и ацетилен; характерными газами с любым содержанием - метан и этилен.

После выявления дефекта и его подтверждения не менее чем двумя-тремя последующими измерениями следует планировать вывод трансформатора из работы прежде всего с дефектами группы 2. Чем раньше выведен из работы трансформатор с развивающимся дефектом, тем меньше риск его аварийного повреждения и объем ремонтных работ.

Если по результатам диагностики трансформатор должен быть выведен из работы, но по каким-то объективным причинам это невозможно осуществить, его следует оставить на контроле с учащенным отбором проб масла и хромотографическим анализом газов.

Хроматографический анализ газов, растворенных в масле, позволяет выявлять не только развивающиеся дефекты в трансформаторе, но и общее состояние изоляции его обмоток. Объективным показателем, позволяющим оценить степень износа изоляции обмоток трансформатора, является степень ее полимеризации, снижение которой прямо характеризует глубину физико-химического разрушения (деструкции) изоляции в процессе эксплуатации. Деструкции целлюлозной изоляции сопутствует рост содержания в трансформатором масле окиси и двуокиси углерода и образование фурановых производных. В частности, наличие суммарной концентрации СО и СО2 более 1% может свидетельствовать о деградации целлюлозной изоляции. Образование фурановых производных является прямым следствием старения бумажной изоляции.

Метод жидкостной хроматографии позволяет определять и контролировать требуемое содержание в трансформаторном масле антиокислительных присадок, защищающих масло и другие изоляционные материалы трансформатора от старения.

Все документы, представленные в каталоге, не являются их официальным изданием и предназначены исключительно для ознакомительных целей. Электронные копии этих документов могут распространяться без всяких ограничений. Вы можете размещать информацию с этого сайта на любом другом сайте.

РОССИЙСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ
РАО «ЕЭС РОССИИ»

ДЕПАРТАМЕНТ НАУЧНО-ТЕХНИЧЕСКОЙ ПОЛИТИКИ И РАЗВИТИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
ПО ДИАГНОСТИКЕ
РАЗВИВАЮЩИХСЯ ДЕФЕКТОВ
ТРАНСФОРМАТОРНОГО ОБОРУДОВАНИЯ
ПО РЕЗУЛЬТАТАМ
ХРОМАТОГРАФИЧЕСКОГО АНАЛИЗА ГАЗОВ,
РАСТВОРЕННЫХ В МАСЛЕ

РД 153-34.0-46.302-00

МОСКВА, 2001

РАЗРАБОТАНО: Департаментом научно-технической политики и развития РАО «ЕЭС России», Научно-исследовательским институтом электроэнергетики (АО ВНИИЭ), раздел - совместно с ЗАО Московский завод «Изолятор» им. А. Баркова

ИСПОЛНИТЕЛИ: Ю.Н. Львов, Т.Е. Касаткина, Б.В. Ванин, М.Ю. Львов, В. С. Богомолов, Ю.М. Сапожников - (АО ВНИИЭ), С.Д. Кассихин, Б.П. Кокуркин, С.Г. Радковский, А.З. Славинский - (ЗАО «МОСИЗОЛЯТОР»), К.М. Антипов, В.В. Смекалов - (Департамент научно-технической политики и развития РАО «ЕЭС России»)

УТВЕРЖДАЮ: Начальник Департамента научно-технической политики и развития РАО «ЕЭС России»

Ю.Н. Кучеров

СПИСОК ИСПОЛЬЗОВАННЫХ ОБОЗНАЧЕНИЙ

М Ai - предел обнаружения в масле i-го газа, %об;

A 0 i - начальное значение концентрации i -г o газа, %об;

A i - измеренное значение концентрации i -г o газа, %об;

Агр i - граничная концентрация i -г o газа, %об;

a i - относительная концентрация i -г o газа;

a maxi - максимальная относительная концентрация i -г o газа;

F Li - интегральная функция распределения;

P Li - вероятность;

N- общее число трансформаторов;

L - интервал измерения концентрации i -г o газа;

n Li - число трансформаторов с концентрацией газа А (1-1) i

V абс i - абсолютная скорость нарастания i -г o газа, %об/мес;

Am i , A (m -1) i - два последовательных измерения концентрации i -г o газа, %об;

Td - периодичность диагностики, мес.;

V отн i - относительная скорость нарастания i -г o газа, %/мес;

b - коэффициент кратности последовательных измерений (принимать b = 5);

T 1 d - минимальное время до повторного отбора пробы масла, мес.;

Аг i - концентрация i -г o газа в равновесии с газовой фазой, %об;

B i - коэффициент растворимости i -г o газа в масле

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ДИАГНОСТИКЕ
РАЗВИВАЮЩИХСЯ ДЕФЕКТОВ ТРАНСФОРМАТОРНОГО
ОБОРУДОВАНИЯ ПО РЕЗУЛЬТАТАМ
ХРОМАТОГРАФИЧЕСКОГО АНАЛИЗА ГАЗОВ,
РАСТВОРЕННЫХ В МАСЛЕ

РД 153-34.0-46.302-00

Срок действия установлен

с 01.01.2001 г.

до 01.01.2011 г.

Настоящие Методические указания составлены на основе накопленного в России опыта применения «Методических указаний по диагностике развивающихся дефектов по результатам хроматографического анализа газов, растворенных в масле силовых трансформаторов» РД 34.46.302-89 (М: СПО Союзтехэнерго, 1989), с учетом рекомендаций публикации МЭК 599 и СИГРЭ и вводятся взамен упомянутого выше РД 34.46.302-89 и взамен противоаварийного циркуляра Ц-06-88(Э) «О мерах по повышению надежности герметичных вводов 110-750 кВ» от 27.07.1988 г.

Настоящие Методические указания распространяются на трансформаторы напряжением 110 кВ и выше, блочные трансформаторы, трансформаторы собственных нужд с любым видом защиты масла от атмосферы и высоковольтные герметичные вводы напряжением 110 кВ и выше, залитые трансформаторным маслом любой марки.

В Методических указаниях изложены: критерии диагностики развивающихся в трансформаторах дефектов (критерий ключевых газов, критерий граничных концентраций газов, критерий отношения концентраций пар газов для определения вида и характера дефекта, критерий скорости нарастания газов в масле); эксплуатационные факторы, влияющие на результаты АРГ; дефекты, обнаруживаемые в трансформаторах с помощью АРГ; основы диагностики эксплуатационного состояния трансформаторов по результатам АРГ; определение наличия дефекта в высоковольтных герметичных вводах по результатам анализа растворенных в масле газов.

Вероятность совпадения прогнозируемого и фактического дефектов в трансформаторах при использовании настоящих Методических указаний - 95 %.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1 Хроматографический анализ растворенных в масле газов проводится в соответствии с методикой «Методические указания по подготовке и проведению хроматографического анализа газов, растворенных в масле силовых трансформаторов» (РД 34.46.303-98), обеспечивающей:

1.1.1 Определение концентраций следующих газов, растворенных в масле: водорода (H 2 ), метана (СН 4), ацетилена (C 2 H 2), этилена (C 2 H 4), этана (C 2 H 6 ), оксида углерода (СО), диоксида углерода (CO 2).

Граничные концентрации растворенных в масле газов

Концентрации газов, %об.

Оборудование

Трансформаторы напряжением 110-500 кВ

Трансформаторы напряжением 750 кВ

Реакторы напряжением 750 кВ

* для СО - в числителе приведено значение для трансформаторов с азотной или пленочной защитами масла, в знаменателе - для трансформаторов со свободным дыханием; для СО 2 - в числителе приведены значения для трансформато ров со свободным дыханием при сроке эксплуатации до 10 лет, в знаменателе - свыше 10 лет, в скобках приведены те же данные для трансформаторов с пленочной или азотной защитами масла

5. ОПРЕДЕЛЕНИЕ ВИДА И ХАРАКТЕРА РАЗВИВАЮЩЕГОСЯ ДЕФЕКТА ПО КРИТЕРИЯМ ОТНОШЕНИЙ КОНЦЕНТРАЦИЙ ПАР ГАЗОВ

Вид и характер развивающихся в трансформаторе повреждений определяется по отношению концентраций следующих газов: Н 2 , СН 4 , С 2 Н 2 , С 2 Н 4 и С 2 Н 6 .

Основные хроматографические признаки дефекта

Механические примеси

Образование углеродосодержащих частиц вследствие разрядов - ацетилен. Появление незавершенных искровых разрядов - водород. Возможно отложение загрязнений по поверхностям и прорастание по ним разряда - водород и ацетилен.

Острые края деталей в масле

Появление незавершенных искровых разрядов - водород. Накопление продуктов деструкции масла по поверхностям и прорастание по ним разряда - водород и ацетилен.

Нарушение контактных соединений

Появление искрового разряда в масле - водород и ацетилен. Отложение продуктов деструкции масла по поверхностям и прорастание по ним разряда - водород и ацетилен. Накопление продуктов деструкции масла - водород и ацетилен.

Ослабление контактных соединений верхней контактной шпильки

Термическая деструкция масла (осмоление) - метан, этан.

Локальные дефекты остова

Микроразряды в остове - ацетилен и водород.

Литература

Рассчитаем величины абсолютных скоростей нарастания концентраций каждого газа:

Так как максимальная абсолютная скорость нарастания у водорода, то Т 1 d определяем по ней:

T 1 d = 5 ´ 5 ´ 10 4 /0,0125 = 0,2 мес., т.е. 6 дней

Фактически следующий отбор пробы масла и АРГ были проведены через 7 дней и получены следующие концентрации газов:

4-й анализ СО 2 = 0,15; СО = 0,02; СН 4 = 0,018; С 2 Н 4 = 0,051; С 2 Н 2 = 0,0035; С 2 Н 6 = 0,0053; Н 2 = 0,01.

По данным этого анализа в трансформаторе подтвердилось наличие быстроразвивающегося дефекта термического характера, не затрагивающего твердую изоляцию - «термический дефект высокой температуры, > 700 °С» и относящегося к 1 группе дефектов «Перегревы токоведущих соединений и элементов конструкции остова».

Трансформатор был выведен в ремонт. Во время ремонта в нем было обнаружено выгорание меди отвода обмотки 330 кВ, что подтвердило правильность поставленного диагноза.

В трансформаторе ТДТГ - 10000/110 после срабатывания газовой защиты на отключение (отбор пробы масла был проведен из бака трансформатора) определен следующий состав растворенных в масле газов (концентрации в %об.):

СО 2 = 0,45; СО = 0,04; СН 4 = 0,021; С 2 Н 4 = 0,027; С 2 Н 2 = 0,134; С 2 Н 6 = 0,006; Н 2 = 0,20.

Изрезультатов анализа следует, что концентрации метана и этилена более, чем в 2 раза превышают соответствующие граничные значения (табл. РД), концентрация водорода в 20 раз превышает граничное значение, а ацетилена - более, чем в 100 раз.

Анализ условий эксплуатации за предшествующий период показал, что отсутствуют факторы, которые могли бы вызвать рост концентраций углеводородных газов (п.).

По полученным концентрациям углеводородных газов определим характер развивающегося в трансформаторе дефекта по таблице текста РД:

На основании полученных данных прогнозируется дефект электрического характера - «разряды большой мощности».

Трансформатор был выведен в ремонт, в нем был обнаружен обрыв токопровода переключателя.

В трансформаторе ТДТН-31500/110 газовая защита сработала на сигнал.

Отобрали пробу газа из газового реле и пробу масла из бака трансформатора. Определили концентрации растворенных в масле газов и газа из газового реле; результаты анализов приведены в таблице:

Характеристика пробы

Концентрации газов, %об.

Масло из бака

Газ из реле, (Ас i)

Расчетное значение газа из реле, (Ari)

1. По концентрациям углеводородных газов в масле из бака трансформатора определим характер развивающегося в нем дефекта по таблице текста РД:

По критерию отношения в трансформаторе прогнозируется дефект электрического характера - дуговой разряд, затрагивающий твердую изоляцию.

2. По концентрациям газов, растворенных в масле бака трансформатора, рассчитаем концентрации этих же газов, соответствующих равновесному состоянию с газовой фазой (Ari ) по формуле РД и результаты расчета занесем в третью строку таблицы:

При сравнении концентраций Ari и Aci по каждому газу (строка 2 и 3 таблицы примера) получаем неравенство: Ari , т.е. можно заключить, что газ в реле выделился в неравновесных условиях в результате быстро развивающегося дефекта (дуговой разряд, затрагивающий твердую изоляцию).

Было дано заключение о выводе трансформатора из работы. При осмотре был обнаружен пробой витковой изоляции.

Приложение 3

ОПРЕДЕЛЕНИЕ ГРАФИЧЕСКИМ СПОСОБОМ РАЗВИВАЮЩИХСЯ В ТРАНСФОРМАТОРАХ ДЕФЕКТОВ ПО РЕЗУЛЬТАТАМ АРГ

Вид развивающихся в трансформаторах дефектов можно ориентировочно определить графически по основным газам: водороду, метану, этилену и ацетилену.

А. Построение графиков по относительным концентрациям.

Основной газ определяется по п. РД.

1. Для дефектов электрического характера основным газом может быть водород или ацетилен (п. текста РД).

На рис. - - изображены графики дефектов электрического характера.

2. Для дефектов термического характера (перегревы при плохих контактах, токах утечки, от магнитных полей рассеяния в ярмовых балках, бандажах, прессующих кольцах и винтах и т.п.) основным газом является метан или этилен в зависимости от температуры нагрева в зоне развития дефекта (см. п. текста РД).

На рис. - изображены графики дефектов термического характера. Графики строятся следующим образом:

По результатам хроматографического анализа масла (А i ) по формуле настоящих РД рассчитать относительные концентрации (a i ) водорода и углеводородных газов;

Определить основной газ в данном анализе (по расчетным относительным концентрациям максимальное значение a maxi соответствует основному газу);

Определить величину отношения a i / a maxi по углеводородным газам и водороду, причем для основного газа это отношение равно единице;

По оси X отложить пять равных отрезков и обозначить полученные точки соответствующими газами в следующей последовательности:

По оси Y отложить отрезок произвольной величины и обозначить его цифрой «1»;

Полученные точки соединить прямыми линиями;

Построенный график сравнить с графиками рис. - и определить характер дефекта.

При сравнении графиков необходимо учитывать модальность и основной газ.

Б. Построение графиков по абсолютным концентрациям

1. По результатам хроматографического анализа масла газ с максимальной концентрацией (Amax i ) принимается за основной газ.

2. Определить величину отношения измеренной концентрации газового компонента к максимальной концентрации (A i / Amax i ), причем для основного газа это отношение равно единице.

Рекомендуется для построения графиков использовать только такие результаты АРГ, в которых концентрации водорода и углеводородных газов в несколько раз превышают соответствующие граничные значения (при этом возможно отсутствие в масле ацетилена и/или наличие низких концентраций водорода).

Пример 1

В трансформаторе ТРДЦН-63000/110 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,004 %об, СН 4 = 0,084 %об, С 2 Н 2 = 0 %об, С 2 Н 4 = 0,02 %об, С 2 Н 6 = 0,011 %об, СО = 0,05 %об, СО 2 = 0,48 %об.

I ) для каждого газа:

а Н2 = 0,004/0,01 = 0,4, а СН4 = 0,084/0,01 = 8,4, а С2Н2 = 0, а С2Н4 = 0,02/0,01 = 2,0, а С2Н6 = 0,011/0,005 = 2,2

8,4 = а СН4 > а С2Н6 > а С2Н4 > а Н2 , т.е. основной газ - метан

Y для каждого газа

СН 4 = 1, Н 2 = 0,4/8,4 = 0,05, С 2 Н 4 = 2/8,4 = 0,24, С 2 Н 2 = 0, С 2 Н 6 = 2,2/8,4 = 0,26

4. Строим график (рис. РД):

Рис. 4.1. График дефекта термического характера в диапазоне средних температур, вызванного подгаром контактов избирателя

В автотрансформаторе АТДЦТГ-240000/220 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,01 %об, СН 4 = 0,09 %об, С 2 Н 2 = 0,008 %об, С 2 Н 4 = 0,167 %об, С 2 Н 6 = 0,03 %об, СО = 0,019 %об, СО 2 = 0,24 %об.

а i ) для каждого газа:

а Н2 = 0,01/0,01 = 1, а СН4 = 0,09/0,01 = 9, а С2Н2 = 0,008/0,001 = 8, а С2Н4 = 0,167/0,01 = 16,7, = 0,03/0,005 = 6,0

16,7 = а С2Н4 > а СН4 > а С2Н2 > а С2Н6 > а Н2 , т.е. основной газ - этилен.

Для каждого газа

С 2 Н 4 = 1, Н 2 = 1/16,7 = 0,06, СН 4 = 9/16,7 = 0,54, С 2 Н 2 = 8/16,7 = 0,45, С 2 Н 6 = 6,0/16,7 = 0,36

4. Строим график (рис.).

5. По основному газу С 2 Н 4 находим график рис. , Приложение, похожий на построенный график (рис.). Следовательно, в автотрансформаторе по данным АРГ прогнозируется дефект термического характера - высокотемпературный перегрев масла.

СО 2 /СО = 0,24/0,019 = 12,6, следовательно, дефектом не затронута твердая изоляция.

Автотрансформатор проработал еще 4 мес. и был выведен в ремонт.

Во время ремонта в нем было обнаружено замыкание прессующего кольца обмотки СН на прессующее кольцо обмотки НН через упавший стакан домкрата.

Рис. 4.2. График дефекта термического характера - высокотемпературный перегрев, вызванный короткозамкнутым контуром в остове

Пример 3

В автотрансформаторе АТДЦТН-250000/500 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,03 %об, СН 4 = 0,18 %об, С 2 Н 2 = 0 %об, С 2 Н 4 = 0,3 %об, С 2 Н 6 = 0,043 %об, СО = 0,016 %об, СО 2 = 0,19 %об.

) для каждого газа:

а Н2 = 0,03/0,01 = 3, а СН4 = 0,18/0,01 = 18, а С2Н2 = 0, а С2Н4 = 0,3/0,01 = 30, а С2Н6 = 0,043/0,005 = 8,6

2. По полученным относительным концентрациям определяем основной газ:

30 = а С2Н4 > а СН4 > а С2Н6 > а Н2 , т.е. основной газ - этилен.

Y для каждого газа

С 2 Н 4 = 1, Н 2 = 3/30 = 0,1, СН 4 = 18/30 = 0,6, С 2 Н 2 = 0, С 2 Н 6 = 8,6/30 = 0,29

4. Строим график (рис.).

5. По основному газу С 2 Н 4 находим график рис. , Приложение, похожий на построенный график (рис.). Следовательно, в автотрансформаторе по данным АРГ прогнозируется дефект термического характера - высокотемпературный перегрев масла.

СО 2 /СО = 0,19/0,016 = 11,9

Рис. 4.3. График дефекта термического характера - высокотемпературный нагрев (> 700 °С), вызванный касанием нижней консоли с шипом

Пример 4

В трансформаторе ТДТН-40000/110 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,011 %об, СН 4 = 0,036 %об, С 2 Н 2 = 0 %об, С 2 Н 4 = 0,152 %об, С 2 Н 6 = 0,039 %об, СО = 0,04 %об, СО 2 = 0,45 %об.

) для каждого газа:

а Н2 = 0,011/0,1 = 1,1, а СН4 = 0,036/0,01 = 3,6, а С2Н2 = 0, а С2Н4 = 0,152/0,01 = 15,2, а С2Н6 = 0,039/0,005 = 7,8

2. По полученным относительным концентрациям определяем основной газ:

15,2 = а С2Н4 > а С2Н6 > а СН4 > а С2Н6 > а Н2 , т.е. основной газ - этилен.

3. Определяем величины отрезков по оси Y для каждого газа

С 2 Н 4 = 1, Н 2 = 1,1/15,2 = 0,072, СН 4 = 3,6/15,2 = 0,24, С 2 Н 2 = 0, С 2 Н 6 = 7,8/15,2 = 0,5

4. Строим график (рис.).

5. По основному газу С 2 Н 4 находим график рис. , Приложение, похожий на построенный график (рис.). Следовательно, в трансформаторе по данным АРГ прогнозируется дефект термического характера - высокотемпературный перегрев масла.

6. Для решения вопроса, затронута ли дефектом твердая изоляция, определим отношение концентраций СО 2 /СО:

СО 2 /СО = 0,45/0,04 = 11,25

Рис. 4.4. График дефекта термического характера - высокотемпературный нагрев (> 700 °С), вызванный подгаром контактов переключателя

Пример 5

В автотрансформаторе ОДТГА-80000/220 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,097 %об, СН 4 = 0,019 %об, С 2 Н 2 = 0,013 %об, С 2 Н 4 = 0,024 %об, С 2 Н 6 = 0,0023 %об, СО = 0,064 %об, СО 2 = 0,27 %об.

1. Определяем относительные концентрации (а i ) для каждого газа:

а Н2 = 0,097/0,01 = 9,7, а СН4 = 0,019/0,01 = 1,9, а С2Н2 = 0,013/0,001 = 13 , а С2Н4 = 0,024/0,01 = 2,4, а С2Н6 = 0,0023/0,005 = 0,46

2. По полученным относительным концентрациям определяем основной газ:

5.3 . РД), следовательно, дефектом затронута твердая изоляция.

Автотрансформатор был выведен в ремонт. Во время ремонта в нем было обнаружено: выгорание изоляции шпилек, касание стягивающих шпилек консоли, выгорание металла шпильки.

Рис. 4.5. График дефекта электрического характера (дуга), вызванного короткозамкнутым контуром в остове

Пример 6 (см. Приложение, пример для случая, когда газовая защита сработала на отключение)

В трансформаторе ТДТГ-10000/110 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,20 %об, СН 4 = 0,021 %об, С 2 Н 2 = 0,134 %об, С 2 Н 4 = 0,027 %об, С 2 Н 6 = 0,0006 %об, СО = 0,04 %об, СО 2 = 0,45 %об.

1. Определяем относительные концентрации (а i ) для каждого газа:

а Н2 = 0,20/0,01 = 20, а СН4 = 0,021/0,01 = 2,1, а С2Н2 = 0,134/0,001 = 134 , а С2Н4 = 0,027/0,01 = 2,7, а С2Н6 = 0,0006/0,005 = 0,12

2. По полученным относительным концентрациям определяем основной газ:

134 = а С2Н2 > а Н2 > а С2Н4 > а СН4 > а С2Н6 , т.е. основной газ - ацетилен

3. Определяем величины отрезков по оси Y для каждого газа

С 2 Н 2 = 1, Н 2 = 20/134 = 0,15, СН 4 = 2,1/134 = 0,016, С 2 Н 6 = 0,12/134 = 0,12, С 2 Н 4 = 2,7/134 = 0,02

4. Строим график (рис.).

5. По основному газу С 2 Н 2 находим график рис. , Приложение, похожий на построенный график (рис.). Следовательно, в трансформаторе по данным АРГ прогнозируется дефект электрического характера - дефект, вызванный дугой.

6. Для решения вопроса, затронута ли дефектом твердая изоляция, определим отношение концентраций СО 2 /СО:

СО 2 /СО = 0,45/0,04 = 11,25

Во время ремонта в нем обнаружили обрыв токопровода переключателя.

Рис. 4.6. График дефекта электрического характера (дуга)

Пример 7

В трансформаторе ТДТН-63000/110 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,053 %об, СН 4 = 0,02 %об, С 2 Н 2 = 0,0013 %об, С 2 Н 4 = 0,049 %об, С 2 Н 6 = 0,009 %об (концентрации оксида и диоксида углерода не определялись).

1. Определяем относительные концентрации (a i ) для каждого газа:

а Н2 = 0,053/0,01 = 5,3, а СН4 = 0,02/0,01 = 2,0, а С2Н2 = 0,0013/0,001 = 1,3 , а С2Н4 = 0,049/0,01 = 4,9, а С2Н6 = 0,009/0,005 = 1,8

2. По полученным относительным концентрациям определяем основной газ:

5,3 = а Н2 > а С2Н4 > а СН4 > а С2Н6 > а С2Н2 , т.е. основной газ - водород

3. Определяем величины отрезков по оси

Рис. 4.7. График дефекта электрического характера (искрение)

Пример 8

В трансформаторе ТДЦ-400000/330 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,27 %об, СН 4 = 0,025 %об, С 2 Н 2 = 0,024 %об, С 2 Н 4 = 0,030 %об, С 2 Н 6 = 0,007 %об (концентрации оксида и диоксида углерода не определялись).

1. Определяем относительные концентрации (a i ) для каждого газа:

а Н2 = 0,27/0,01 = 27,0, а СН4 = 0,025/0,01 = 2,5, а С2Н2 = 0,024/0,001 = 24,0 , а С2Н4 = 0,030/0,01 = 3,0, а С2Н6 = 0,007/0,005 = 1,4

2. По полученным относительным концентрациям определяем основной газ:

27 = а Н2 > а С2Н2 > а С2Н4 > а СН4 > а С2Н62 , т.е. основной газ - водород

3. Определяем величины отрезков по оси

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Гречка с фаршем рецепт на сковороде Гречка с фаршем и овощами на сковороде Гречка с фаршем рецепт на сковороде Гречка с фаршем и овощами на сковороде Профессия Проходчик.  Кто такой Проходчик. Описание профессии. Вакансии проходчика для работы вахтой Проходчик профессия Профессия Проходчик. Кто такой Проходчик. Описание профессии. Вакансии проходчика для работы вахтой Проходчик профессия «Из тьмы веков» Идрис Базоркин Из тьмы веков читать «Из тьмы веков» Идрис Базоркин Из тьмы веков читать