Где развита геотермальная энергетика. Геотермальная энергетика – ее особенности, перспективы

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

По мере развития и становления общества человечество стало искать все более современные и при этом экономичные способы получения энергии. Для этого сегодня возводятся различные станции, но в то же время широко используется энергия, содержащаяся в недрах земли. Какой она бывает? Попробуем разобраться.

Геотермальная энергия

Уже из названия понятно, что она представляет собой тепло земных недр. Под земной корой располагается слой магмы, являющийся огненно-жидким силикатным расплавом. Согласно данным исследований, энергетический потенциал этого тепла намного выше энергии мировых запасов природного газа, а также нефти. На поверхность выходит магма — лава. Причем наибольшая активность наблюдается в тех слоях земли, на которых находятся границы тектонических плит, а также там, где земная кора характеризуется тонкостью. Геотермальная энергия земли получается следующим образом: лава и водные ресурсы планеты соприкасаются, в результате чего вода начинает резко нагреваться. Это приводит к извержению гейзера, формированию так называемых горячих озер и подводных течений. То есть именно тем явлениям природы, свойства которых активно используются как энергии.

Искусственные геотермальные источники

Энергия, содержащаяся в недрах земли, должна использоваться грамотно. Например, есть идея создания подземных котлов. Для этого нужно пробурить две скважины достаточной глубины, которые будут соединяться внизу. То есть получается, что практически в любом уголке суши можно получать геотермальную энергию промышленным способом: через одну скважину будет закачиваться холодная вода в пласт, а через вторую - извлекаться горячая вода или пар. Искусственные источники тепла будут выгодны и рациональны, если получаемое тепло будет давать больше энергии. Пар можно направлять в турбогенераторы, в которых будет вырабатываться электричество.

Конечно, отобранное тепло - это всего лишь доля того, что имеется в общих запасах. Но следует помнить, что глубинный жар будет постоянно пополняться вследствие процессов сжатия горных пород, расслоения недр. Как говорят специалисты, земная кора аккумулирует тепло, общее количество которого в 5000 раз больше теплотворной способности всех ископаемых недр земли в целом. Получается, что время работы подобных искусственно созданных геотермальных станций может быть неограниченным.

Особенности источников

Источники, позволяющие получить геотермальную энергию, практически невозможно использовать полностью. Существуют они в 60 с лишним странах мира, при этом больше всего наземных вулканов на территории Тихоокеанского вулканического огненного кольца. Но на практике оказывается, что геотермальные источники в разных регионах мира совершенно разные по своим свойствам, а именно средней температуре, минерализации, газовому составу, кислотности и так далее.

Гейзеры - источники энергии на Земле, особенности которых в том, что они с определенными промежутками извергают кипящую воду. После того как произошло извержение, бассейн становится свободным от воды, на его дне можно заметить канал, который уходит глубоко в землю. Гейзеры как источники энергии используются в таких регионах, как Камчатка, Исландия, Новая Зеландия и Северная Америка, а одиночные гейзеры встречаются и в некоторых других областях.

Откуда берется энергия?

Совсем близко к земной поверхности располагается неостывшая магма. Из нее выделяются газы и пары, которые поднимают и проходят по трещинам. Смешиваясь с подземными водами, они вызывают их нагревание, сами превращаются в горячую воду, в которой растворены многие вещества. Такая вода выделяется на поверхность земли в виде разных геотермальных источников: горячих ключей, минеральных источников, гейзеров и так далее. По мнению ученых, горячие недра земли - это пещеры или камеры, соединенные проходами, трещинами и каналами. Они как раз заполняются подземными водами, а совсем недалеко от них располагаются очаги магмы. Таким естественным образом и образуется тепловая энергия земли.

Электрическое поле Земли

Есть в природе еще один альтернативный источник энергии, который отличается возобновляемостью, экологической чистотой, простотой в использовании. Правда, до сих пор этот источник только изучается и не применяется на практике. Так, потенциальная энергия Земли кроется в ее электрическом поле. Получить энергию таким способом можно на основании изучения базовых законов электростатики и особенностей электрического поля Земли. По сути, наша планета с точки зрения электрической - это сферический конденсатор, заряженный до 300 000 Вольт. Его внутренняя сфера имеет отрицательный заряд, а внешняя - ионосфера - положительный. является изолятором. Через нее происходит постоянное течение ионных и конвективных токов, которые достигают силы во много тысяч ампер. Однако разница потенциалов между обкладками при этом не уменьшается.

Это говорит о том, что в природе есть генератор, роль которого состоит в постоянном восполнении утечки зарядов с обкладок конденсатора. В роли такого генератора и выступает магнитное поле Земли, вращающееся вместе с нашей планетой в потоке солнечного ветра. ЭнергиямагнитногополяЗемлиможет быть получена как раз путем подключения к этому генератору потребителя энергии. Чтобы сделать это, нужно выполнить монтаж надежного заземления.

Возобновляемые источники

Поскольку численность населения нашей планеты неуклонно растет, нам требуется все больше энергии, чтобы обеспечить население. Энергия, содержащаяся в недрах земли, может быть самой разной. Например, существуют возобновляемые источники: энергия ветра, солнца и воды. Они отличаются экологической чистотой, а потому использовать их можно, не боясь причинить вред окружающей среде.

Энергия воды

Этот способ используется уже на протяжении многих веков. Сегодня построено огромное количество плотин, водохранилищ, в которых вода используется для того, чтобы вырабатывалась электрическая энергия. Суть действия этого механизма проста: под влиянием течения реки вращаются колеса турбин, соответственно, энергия воды превращается в электрическую.

Сегодня существует большое количество гидроэлектростанций, которые преобразуют энергию потока воды в электроэнергию. Особенность этого способа в том, что возобновляются, соответственно, такие конструкции имеют низкую себестоимость. Именно поэтому, несмотря на то что строительство ГЭС ведется довольно долго, да и сам процесс весьма затратный, все же эти сооружения значительно выигрывают у электроемких производств.

Энергия солнца: современно и перспективно

Солнечная энергия получается с помощью солнечных батарей, однако современные технологии позволяют использовать для этого новые методы. Крупнейшей в мире является система, построенная в пустыне Калифорнии. Она полностью обеспечивает энергией 2000 домов. Конструкция работает следующим образом: от зеркал отражаются солнечные лучи, которые направляются в центральный бойлер с водой. Она закипает и превращается в пар, вращающий турбину. Она, в свою очередь, связана с электрическим генератором. Ветер тоже может использоваться как энергия, которую дает нам Земля. Ветер надувает паруса, вращает мельницы. А теперь с его помощью можно создавать устройства, которые будут вырабатывать электрическую энергию. Вращая лопасти ветряка, он приводит в действие вал турбины, который, в свою очередь, связан с электрогенератором.

Внутренняя энергия Земли

Она появилась вследствие нескольких процессов, главные из которых - аккреция и радиоактивность. По мнению ученых, становление Земли и ее массы произошло за несколько миллионов лет, причем произошло это вследствие образования планетезималей. Они слипались, соответственно, масса Земли становилась все больше. После того как наша планета стала иметь современную массу, но еще была лишена атмосферы, на нее беспрепятственно падали метеорные и астероидные тела. Этот процесс как раз и называется аккрецией, и приводил он к тому, что выделялась значительная гравитационная энергия. И чем большие по размеру тела попадали на планету, тем в большем объеме выделялась энергия, содержащаяся в недрах Земли.

Эта гравитационная дифференциация привела к тому, что вещества стали расслаиваться: тяжелые вещества просто тонули, а легкие и летучие всплывали. Дифференциация сказывалась также и на дополнительном выделении гравитационной энергии.

Атомная энергия

Использование энергии земли может происходить по-разному. Например, с помощью возведения атомных электростанций, когда тепловая энергия выделяется за счет распада мельчайших частиц материи атомов. В качестве основного топлива служит уран, который содержится в земной коре. Многие считают, что именно этот способ получения энергии наиболее перспективен, однако его применение сопряжено с рядом проблем. Во-первых, уран излучает радиацию, которая убивает все живые организмы. К тому же если это вещество попадет в почву или атмосферу, то возникнет настоящая техногенная катастрофа. Печальные последствия аварии на Чернобыльской АЭС мы испытываем на себе по сегодняшний день. Опасность таится в том, что радиоактивные отходы могут угрожать всему живому очень и очень долгое время, целые тысячелетия.

Новое время - новые идеи

Конечно, люди не останавливаются на достигнутом, и с каждым годом предпринимается все больше попыток найти новые способы получения энергии. Если энергия тепла земли получается достаточно просто, то некоторые способы не так просты. Например, в качестве источника энергии вполне можно использовать биологический газ, который получается при гниении отходов. Его можно применить для отапливания домов и нагревания воды.

Все чаще возводятся когда поперек устьев водоемов устанавливаются плотины и турбины, которые приводятся в действие приливами и отливами, соответственно, получается электроэнергия.

Сжигая мусор, получаем энергию

Еще один способ, который уже применяется в Японии, - это создание мусоросжигательных заводов. Они сегодня построены в Англии, Италии, Дании, Германии, Франции, Нидерландах и США, однако только в Японии эти предприятия стали использоваться не только по назначению, но и для получения электричества. На местных заводах сжигается 2/3 всего мусора, при этом заводы оснащены паровыми турбинами. Соответственно, они снабжают теплом и электричеством близлежащие территории. При этом по затратам построить такое предприятие гораздо выгоднее, чем возвести ТЭЦ.

Более заманчивой выглядит перспектива использования тепла Земли там, где сосредоточены вулканы. В таком случае не понадобится бурить Землю слишком глубоко, поскольку уже на глубине 300-500 метров температура будет выше точки кипения воды минимум в два раза.

Существует и такой способ получения электроэнергии, как Водород - самый простой и легкий химический элемент - может считаться идеальным топливом, ведь он есть там, где есть вода. Если сжигать водород, можно получать воду, которая разлагается на кислород и водород. Само водородное пламя безвредное, то есть вреда окружающей среде наноситься не будет. Особенность этого элемента в том, что у него высокая теплотворная способность.

Что в будущем?

Конечно, энергия магнитного поля Земли или та, которую получают на атомных станциях, не может удовлетворить полностью все потребности человечества, которые растут с каждым годом. Однако специалисты говорят о том, что поводов для переживаний нет, поскольку топливных ресурсов планеты пока хватает. Тем более что используется все больше новых источников, экологически чистых и возобновляемых.

Остается проблема загрязнения окружающей среды, причем растет она катастрофически быстро. Количество вредных выбросов зашкаливает, соответственно, воздух, которым мы дышим, вреден, вода имеет опасные примеси, а почва постепенно истощается. Именно поэтому так важно своевременно заняться изучением такого явления, как энергия в недрах Земли, чтобы искать способы сокращения потребностей в органическом топливе и активнее использовать нетрадиционные источники энергии.

По мнению специалистов, тепло, выделяемое внутри планеты, сможет обеспечить работу ГеоТЭС общей мощностью до 200-250 млн кВт при глубине бурения скважин до 7 км и сроках работы станции порядка 50 лет. Также могут быть задействованы системы геотермального теплоснабжения мощностью до 1,2-1,5 млрд. кВт при глубине бурения скважин до 4 км и сроке эксплуатации 50 лет.
Мировыми лидерами в использовании геотермальных источников являются США, Филиппины, Индонезия, Италия, Новая Зеландия, Япония, Исландия. В Исландии 99% всех энергетических затрат покрывается за счет геотермальных источников.


Геотермальные источники, согласно классификации Международного энергетического агентства, подразделяются на 5 типов:
1) месторождения геотермального сухого пара: сравнительно легко разрабатываются, но довольно редки. Тем не менее, половина всех действующих в мире ГеоТЭС использует тепло этих источников;


2) источники влажного пара (смеси горячей воды и пара): встречаются чаще, но при их освоении приходится решать вопросы предотвращения коррозии оборудования ГеоТЭС и загрязнения окружающей среды (удаление конденсата из-за высокой степени его засоленности);


3) месторождения геотермальной воды (содержат горячую воду или пар и воду): представляют собой, так называемые, геотермальные резервуары, которые образуются в результате наполнения подземных полостей водой атмосферных осадков, нагреваемой близко лежащей магмой;


4) сухие горячие скальные породы, разогретые магмой (на глубине 2 км и более): их запасы энергии наиболее велики;


5) магма, представляющая собой расплавленные горные породы, нагретые до 1300 °С.

Применение геотермальных источников в России является довольно перспективным направлением возобновляемой энергетики ввиду низкой стоимости вырабатываемой ими энергии. Потенциал геотермальных источников России намного превышает запасы органического топлива (по некоторым данным в 10-15 раз). Выявленные в настоящий момент запасы геотермальных вод в России температурой 40-200 0С и глубиной залегания до 3500 м могут обеспечить около 14 млн. м3 горячей воды в сутки, что составляет около 30 млн. т.у.т.

Первая геотермальная электростанция в России была построена в 1966 году на Паужетском месторождении на Камчатке с целью электроснабжения окрестных поселков и рыбоперерабатывающих предприятий. Причем, по мнению специалистов, именно благодаря использованию геотермальных источников Озерновский рыбокомбинат смог сохранить рентабельность в сложных экономических условиях. В настоящий момент камчатская геотермальная система может обеспечить энергией электростанции мощностью до 250-350 МВт. Однако данный потенциал используется только на четверть.


Геотермальные ресурсы Курильских островов на данный момент позволяет получать 230 МВт электроэнергии, что может обеспечить все потребности региона в энергетике, тепле, горячем водоснабжении.


Наиболее перспективными регионами для применения геотермальных источников в России являются юг России и Дальний Восток. Огромный потенциал геотермальной энергетики имеют Кавказ, Ставрополье, Краснодарский край. Здесь практически в любой точке возможно начать разработку месторождений геотермальных вод с температурой от 70 до 126 0С. Причем, вода выходит на поверхность под естественным давлением, что существенно сокращает расходы на насосы. В настоящее время в Дагестане 30% жилого фонда отапливается и снабжается водой благодаря геотермальным источникам. Данный показатель даже в современных условиях может быть увеличен до 70%.


В Калининградской области обнаружено геотермальное месторождение с температурой 105-120 0С, которое может быть использовано с целью получения электроэнергии.


Использование геотермальных вод в Центральной части России требует больших затрат ввиду глубокого залегания термальных вод - ниже 2 км. В данных регионах перспективным и выгодным для теплоснабжения является применение геотермальных вод с температурой 40-600С, залегающих на глубине 800 м, а также использование грунтового тепла по средствам тепловых насосов. Такая практика в России еще не получила широкого применения и используется в ряде отдельных проектов: 17-этажный дом в Москве, школа в Ярославской области, отдельные коттеджные поселки.


В Калининградской области в планах осуществление пилотного проекта геотермального тепло- и электроснабжения города Светлый на базе бинарной ГеоЭс мощностью 4 МВт.


На острове Итуруп обнаружены ресурсы двухфазного геотермального теплоносителя, мощности которого достаточно для удовлетворения энергопотребностей всего острова. На южном острове Кунашире действует ГеоЭс 2,6 МВт, запасы геотермального тепла которой уже используются для получения электроэнергии и теплоснабжения г. Южно-Курильска. Планируются строительство еще нескольких ГеоЭс суммарной мощностью 12-17 МВт. Недра северного острова Парамушир менее изучены. Однако известно, что и на этом острове есть значительные запасы геотермальной воды температурой от 70 до 95 °С.


В январе 2012 года в Республике Мордовия началось строительство «энергоэффективного дома», который будет отапливаться энергией геотермальных вод.


Геотермальная энергетика России ориентирована как на строительство «гигантов» (крупных объектов), так и на использование геотермальной энергии для отдельных домов, школ, больниц, частных магазинов и других объектов мощностью 0,1-0,4 МВт с использованием геотермальных циркуляционных систем.


В настоящий момент в России разведано около полусотни геотермальных месторождений. Для дальнейшего развития геотермальной энергетики необходимы инвестиции и поддержка государства. Введение геотермальной энергетики в энергобаланс страны позволит, с одной стороны, повысить энергетическую безопасность, с другой - снизить вредное воздействие на экологическую обстановку по сравнению с традиционными источниками.

Что такое геотермальная энергетика? Под этим термином подразумевается изготовление теплоэнергии, электричества, при котором используется энергия из земных недр. Данный вид энергетики не наносит почти никакого вреда окружающей среде. Произведенный при «содействии» горячих геотермальных источников один киловатт электроэнергии приводит к выбросу 13-380 граммов углекислоты, тогда как в случае с углем, к примеру, все обстоит намного печальнее (1042 граммов на один киловатт в час).

Хотя, тепло, которое таят в себе земные глубины, не является «концентрированным» - на многих территориях извлечь выгоду можно лишь с малой части энергии.

Всего существует пять разновидностей источников геотермальной энергии:

Магма – горные породы, температура которых составляет 1300 градусов Цельсия, находящиеся в расплавленном состоянии;

Скальные породы, нагретые до очень высоких температур посредством магмы, пребывающие в сухом состоянии;

Источники геотермальной воды, в которых имеется вода и пар, либо только вода (горячая); они возникают следующим образом: пустоты в земле заполняются водой в результате выпадения атмосферных осадков, после чего эта вода нагревается магмой, располагающейся рядом;

Месторождения влажного пара; недостаток данных месторождений заключается в том, что теплоэлектростанции для них приходится организовывать таким образом, чтобы не допустить коррозии оборудования, а также минимизировать вредное воздействие на окружающую среду;

Источники сухого пара; их относительно мало, однако они достаточно легко разрабатываются. 50% геотеплоэлектростанций планеты функционируют именно за счет источников сухого пара.

Больше остальных в настоящий момент применяются источники горячих вод, а также природного пара. Хотя, для полноценного развития геотермальной энергетики в будущем придется осваивать горячие горные породы. Их температура равняется более чем ста градусам на трех-пяти километровой глубине.

В электричество тепло из земных недр можно «превращать» при условии, если теплоноситель обладает 150-градусной (и более) температурой. Для этой цели возводятся специальные сооружения, называемые геоэлектростанциями. Энергия на геоэлектростанциях «добывается» при помощи одного из следующих способов:

Непрямая схема. Пар попадает в турбины, которые подсоединены к генераторам электроэнергии, проходя через трубы. В этом случае пар, перед тем как оказаться в трубах, проходит «обработку» - из него извлекают оказывающие деструктивное влияние на материал труб газы.

Прямая схема. Все происходит точно так же с той разницей, что при использовании этой схемы упускается этап очистки пара – последний сразу идет в трубы.

Смешанная схема. Она похожа на предыдущую схему, однако в этом случае после конденсации вода очищается от газов, которые в ней не растворились.

В настоящий момент «тепловым богатством», которое таит в себе Земля, пользуется свыше восьми десятков государств. При этом семь десятков стран используют возможности геотермальной энергетики, строя бассейны, теплицы, оздоровляя население, а двадцать пять государств имеют в своем распоряжении геотеплоэлектростанции.

Геотеплоэлектростанции, которыми сейчас располагает человечество, способны обеспечить электроэнергией один процент населения Земли (что равняется 60 миллионам человек).

Что касается России, она не может похвастаться развитостью данной сферы, хотя запасов энергии земных недр на ее территории очень много – даже больше, чем запасов органического топлива. При этом большее количество «залежей» находится на Курильских островах, Камчатке, Сахалине, однако в этих районах проживает мало людей, здесь сложный рельеф и часто происходят землетрясения – словом, условия не из лучших.

Более перспективными в этом плане являются Калининградская область, Ставропольский, Краснодарский края – они могут похвастаться наличием запасов термальных вод. Чукотка также располагает геотермальными источниками, при этом некоторые их них уже сейчас обеспечивают тамошние населенные пункты энергией. Достаточно давно геотермальными ресурсами пользуются и на Северном Кавказе, поставляя тепло, горячую воду жителям, используя их в промышленности, сельскохозяйственной сфере. Преимущества геотермальной энергетики доступны и для людей, проживающих в Западно-Сибирском регионе, Прибайкалье, Приморье.

Специалисты утверждают, что в последнее время Россия все более активно работает в направлении использования геотермальных ресурсов. Следует упомянуть о том, что все же в настоящий момент доля электричества, получаемая за счет геотермальной энергии, в общем количестве энергии, «поставляемой» альтернативными источниками, мизерно мала, и едва ли достигает 0,2%.

Подсчитано, что на глубине до 5 км в недрах Земли количество сосредоточенной теплоты многократно превышает энергию, заключенную во всех ви­дах ископаемых энергоресурсов. В отдельных регионах, например, на Камчатке, в Исландии горячие воды изливаются на поверхность в виде гейзеров. Ныне доказано, что геотермальная энергия, получаемая за счет использования природного тепла земных недр, является наиболее перспективной и экологически безопасной среди возобновляе­мых видов энергии.

В настоящее время во многих странах мира (США, Россия, Ис­ландия и др.) для выработки электроэнергии и отопления зданий, по­догрева теплиц и парников используется тепло горячих источников. Теплоснабжение столицы Исландии Рейкьявика начиная с 1930 г. в основном осуществляется на основе геотермального тепла. Важно под­черкнуть при этом, что геотермальные электростанции (ГеоТЭС) по компоновке, оборудованию, эксплуатации мало отличаются от тради­ционных теплоэлектростанций.

В основном используют термальные воды неглубокого залегания с температурой 50-100°С. Так, скважина с суточным дебитом 1500 м 3 термальной воды (60°С) обеспечивает нужды в горячей воде поселка с населением 14 тыс. жителей. В северных широтах подземные термаль­ные воды используются для отопления жилищ, для лечебных целей, для выращивания овощей и даже фруктов в специальных оранжереях.

В искусственных геотермальных источниках в качестве рабочего тела применяют жидкость или газ, которые по пробуренным скважи­нам циркулируют в толще горных пород, имеющих высокие темпера­туры.

Например, в США проводятся эксперименты по закачке холод­ной воды в скважины, пробуренные до глубины 4 км в зону горячих, но трещиноватых и потому безводных пород. Примерно 3/5 закачива­емой воды через другие скважины поступает на поверхность, но уже в виде горячего пара. Этот пар может не только вырабатывать электро­энергию, приводя в движение турбины, но и использоваться для цен­трального отопления. Подобные эксперименты проводятся и в других странах.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предмет промышленной экологии
Наиболее массированный вред природной среде наносят промыш­ленные предприятия, энергетика и автомобильный транспорт - неотъемлемые компоненты урбанизированных и техногенно нагруженных территорий. Э

Стратегии мирового развития с учетом экологических ограничений
Обусловленные техногенной деятельностью изменения природной среды бумерангом вернулись и к их первопричине - человеку, стали негативно сказываться на самых различных сторонах общественной жизни, вы

Ничто не даётся даром
Очевидно, что вышеприведенные законы не охватывают все сто­роны взаимодействия общества и природы. Тем не менее, будучи простыми, по форме, но глубокими по содержанию, они закладывают ос­нову нравс

Цивилизационная революция XXI века
Наиболее ощутимым в смысле воздействия на среду обитания че­ловека и достаточно хорошо изученным можно считать загрязнение окружающей среды. Оно непосредственно связано с научно-техничес­ким прогре

Природное топливо
Топливо - это горючее вещество, выделяющее при окислении тепловую энергию, используемую в дальнейшем непосредствен­но в технологических процессах или преобразуемую в другие виды энергии. Т

Искусственное топливо
К искусственным топливам относятся: кокс доменных печей, ис­кусственные горючие газы, моторное топливо и др. Кокс - твердый углеродистый остаток, образующийся п

Альтернативное углеродсодержащее топливо
В связи с постепенным истощением запасов нефти и угля, а также усилением загрязнения среды обитания вредными продуктами сгора­ния развернуты работы по поиску и применению альтернативного

Теплоэнергетика и ее воздействие на природную среду
Химическое загрязнение окружающей среды. При сжигании углеродсодержащего топлива (угля, нефти, газа и др.) оно неизбежно. Рассмот­рим особенности поступления вредных вещ

Гидроэнергетика и ее воздействие на природную среду
Гидроэлектростанции: достоинства и экологические проблемы. Страны СНГ обладают огромными гидроэнергоресурсами, которые оцениваются в 3,94 трлн кВтч/год, из них экономический по

Ядерная энергетика и экология
Радиационная обстановка на Земле за последние 60-70 лет подверглась существенным изменениям: к началу Второй мировой войны во всех странах мира имелось около 10-12 г полученного в чистом виде естес

Радиационный экологический контроль
Естественные и искусственные радиоактивные вещества равномерно распределены в окружающей среде (за исключением аномальных геологических и промышленных районов повышенной радиоактивности) и являются

Территории повышенной радиоактивной загрязненности среды от проведения ядерных взрывов
В конце 1942 г. на территории Чикагского университета, в помещении зала под трибунами университетского стадиона, началась подготовка к пуску первого в мире ядерного реактора. Установка массой в нес

Особенности радиоэкологического загрязнения
В естественных природных условиях радиационное загрязнение среды, как правило, сочетается с воздействием и других техногенных факторов, прежде всего химического загрязнения. В силу этого вычленить


Помимо широкого использования невозобновляемых источников энергии (уголь, нефть, газ, ядерное топливо) активно изучается и реа­лизуется возможность получения энергии за счет альтернативных (не­трад

Использование солнечной энергии
Мощность солнечной энергии, поступающей на поверхность Зем­ли, оценивается в 20 млрд кВт, что эквивалентно 1,2-1014 т условного топлива в год. Для сравнения: мировые запасы органического

Энергия океанов и морей
Экологически чистая энергия морей и океанов может быть исполь­зована в волновых электростанциях (ВолнЭС), электростанциях мор­ских течений (ЭСМТ) и приливных электростанциях (ПЭС), где про­исходит

Ветроэнергетика
Энергия ветра в конечном итоге есть результат тепловых процессов, происходящих в атмосфере планеты. Причина активных процессов пе­ремещения воздушных масс заключается в различии плотностей нагре­то

Биоэнергетика
Биоэнергетикаоснована на получении биомассы, которая исполь­зуется в качестве топлива непосредственно или после соответствую­щей переработки. При этом выделяют три направления получения теп­

Водородная энергетика
Огромный интерес к водороду как к перспективному топливу обус­ловлен рядом неоспоримых его преимуществ, главные из которых та­ковы: 1) экологическая безопасность водорода в отличие от других топ-ли


В настоящее время удовлетворение потребностей в топливно-энергетических ресурсах нашей страны, обеспечение рациональной структуры топливно-энергетического баланса страны, поиск дополнительных источ

Приоритеты в развитии автономной и возобновляемой энергетики
В условиях Республики Беларусь достаточно эффективным может быть использование различных видов возобновляемых источников энергии, на базе которых могут быть созданы различные энергетические установ

Структура и виды транспорта
Транспорт, с помощью которого осуществляется перемещение гру­зов и пассажиров, играет уникальную роль, связывая все важнейшие сферы материального производства в единую систему хозяйственной деятель

Экологическое воздействие транспорта на природную среду и человека
Отчуждение земель. Естественно, что для размещения транспорт­ных коммуникаций нужны земля, вода, воздух, подчас огромных пло­щадей и объемов. Подсчитано, что в США площадь земель,

Сокращение выбросов автотранспорта, работающего на углеводородном топливе
Автомобильными двигателями выделяются в воздух городов более 95% оксида углерода, около 65% углеводородов и 30% оксидов азота. Расплачиваться за это приходится ухудшением здоровья людей как собстве

Планировочно-градостроительные мероприятия
Они включают специальные приемы застройки и озеленение ав­томагистралей, размещение жилой застройки по принципу зонирова­ния (в первом эшелоне застройки – от магистрали – размещаются здания понижен

Технологические мероприятия
Совершенствование двигателей внутреннего сгорания (ДВС) с искро­вым зажиганием. Известно, что наибольшее влияние на токсичность отработанных газов оказывают изменения, в

Санитарно-технические мероприятия
К таковым относится прежде всего установка каталитических нейтрализаторов. Они используются для обезвреживания выхлопных га­зов автомобиля путем химического превращения отдельных вредных веществ, с

Ужесточение стандартов на токсичность выхлопных газов
Исходя из понимания глобальной опасности стремительно разви­вающегося автотранспорта, еще 20 марта 1958 г. под эгидой ООН было достигнуто международное соглашение «О принятии единообразных условий

Новые виды топлива и транспорта
К таковому обычно относят различные спирты (метанол и этанол) и водород. Спирты.В ряде стран, особенно располагающих обширными план­тациями сахарного тростника, все в

Разработка альтернативных видов автотранспорта
К таковым относятся прежде всего электромобиль, солнечный электрический автомобиль, автомобиль с инерционным двигателем, автомобиль с гибридным двигателем. Электромобили

Природный горно-промышленный комплекс – объект изучения горной экологии
Источниками воздействия горного производства на окружающую природную среду являются открытые и под­земные горные работы, обогатительные фабрики, отвалы и хвостохранилища и др. Масштабы этого воздей

Воздействие горного производства на окружающую среду
Для всех способов разработки месторождений харак­терно воздействие на биосферу, затрагивающее практически все ее элементы: водный и воздушный бассейны, землю, не­дра, растительный и животный мир.

Охрана воздушного бассейна в горнодобывающей промышленности
Горное производство вызывает два вида загрязнений атмосферного воздуха: запыленность и загазованность. Ко­личество выбросов, их объем и вещественный состав опре­деляются источниками загрязнения. В

Влияние горного производства на гидросферу
Воздействие горного производства на водный бассейн проявляется в изменении водного режима, загрязнении и за­сорении вод. Изменение водного режима.При строительстве и э

Охрана водного бассейна в горном производстве
Под охраной водного бассейна (природных вод) пони­мается соблюдение установленного порядка пользования водами, т.е. обеспечение рационального управляемого ис­пользования, сохранения и восполнения и

Создание противофильтрационных завес
Вотличие от традиционных методов осушения месторождений полезных ископаемых, когда срабатываются статические и динамиче­ские ресурсы подземных вод, метод создания противофильт­рационных завес разли

Влияние горного производства на природный ландшафт
Специфическая особенность размещения предприятий горной промышленности заключается в том, что они могут создаваться только там, где имеются залежи полезных иско­паемых. При этом горные предприятия

Безотходное горное производство
Горное производство образует твердые, жидкие и газо­образные отходы (табл.6.3.) Большое количество отходов является наиболее объек­тивным показателем несовершенства проектируемой или приме


Все отрасли промышленности являются загрязнителями природной среды, отличаясь лишь ассортиментом, степенью опасности и объемом выбросов (сбросов), а также количеством твердых токсичных отходов (таб

Черная и цветная металлургия
По объему загрязнений одно из первых мест в народном хозяйстве занимает черная и цветная металлургия, металлообрабатывающая промышленность. Производство чугуна и стали сопровождается образованием б

Химическая и нефтехимическая промышленность
Химическая промышленность. На втором месте после металлургического производства по уровню негативного воздействия на окружающую среду находятся отрасли химической промышле

Машиностроительная промышленность
Практически в любом городе, а тем более промышленном центре имеются предприятия машиностроения. В одном случае это единичные предприятия, в других - группа различных по специализации машино

Промышленность строительных материалов
Крупным источником твердых частиц, загрязняющих природную среду, являются цементные заводы, известковые печи, установки по производству магнезита, асфальта, печи обжига кирпича. Наибольшая

Проблемы природопользования в сельском хозяйстве
Сельскохозяйственное природопользование является одним из древнейших видов природопользования, непосредственно направленным на удовлетворение потребностей человека. Качество сельхозпродукции непоср

Экологизация промышленного производства
Для уменьшения неблагоприятного воздействия промышленности на окружающую среду необходимо предпринимать меры по оптимизации и экологизации промышленного производства. Экологизация промышле

Основные пути и методы очистки сточных вод
Различают два основных пути очистки сточных вод: разбавление и очистка их от загрязнений. Разбавление не ликвидирует воздействия сточных вод, а лишь ослабляет его на локальном участке водоема. Осно

Экологически безопасные методы очистки промстоков
Термические методы. На химических предприятиях образуются сточные воды, содержащие различные минеральные соли (кальция, магния, натрия и др.), а также широкий спектр органических в

Очистка выбросов в атмосферу
Основным направлением охраны атмосферного воздуха от вредных выбросов должна быть разработка малоотходных и безотходных технологических процессов. Однако та­кую задачу следует полагать стратегическ

Основные принципы выбора метода и аппаратуры очистки газовых выбросов от твердых частиц и аэрозолей
Выбор метода и оборудования, обеспечива­ющих необходимую степень очистки, зависит от большого числа параметров, среди которых основным является эффективность работы си­стемы по отношению к преоблад

Очистка выбросов от токсичных газо- и парообразных примесей
С этой целью разработаны три основные группы методов очистки: 1) промывка выбросов растворителями содержащейся в них примеси (абсорбционный метод); 2) поглощение газообразных примесей твер­дыми тел

Реабилитация природных ландшафтов и нарушенных земель
Под мелиорацией понимается система организационно-хозяй­ственных и технических мероприятий, направленных на улучшение земель в целях создания наиболее благоприятных условий для разви­тия сельского

Виды отходов и масштабы их образования
Отходы производства и потребления - это остатки сырья, материалов, полуфабрикатов, иных изделий или продуктов, образовавшиеся в процессе производства и потребления, а также продукц

Обращение отходов
Обращение отходов - деятельность, в процессе которой обра­зуются отходы, а также деятельность по сбору, использованию, обезв­реживанию, транспортированию, размещению отходов.

Нормативы образования отходов и лимитов на их размещение
Суть этого вида экологического сопровождения деятельности пред­приятия состоит: · в установлении норматива образования отходов для действую­щего предприятия, исходя из анализа технологии п

Сбор, хранение и транспортировка отходов
Надлежащая организация сбора, хранения и транспортировки от­ходов вносит большой вклад в оздоровление ОС. В США, где норма накопления, например, твердых бытовых отходов (ТБО) в 2-3 раза выше, чем в

Полигоны для размещения твердых бытовых отходов
Закон «Об отходах производства и потребления» установил требования к объектам размещения отходов. Созда­ние таких объектов - специально оборудованных сооружений (поли­гонов, шламохранилищ, отвалов

Обращение токсичных промышленных отходов
Основными направлениями обращения твердых промышленных (ТПО) отходов являются: · захоронение на полигонах и свалках; · переработка конкретных твердых отходов по заводской техно­ло

Определение геотермальной энергии заложено в самом её названии – это энергия тепла земных недр. Слой магмы, расположенный под земной корой, представляет собой огненно-жидкий, чаще всего силикатный расплав. Согласно подсчетам, энергетический потенциал тепла на глубине 10 тысяч метров в 50 тысяч раз превышает энергию мировых запасов природного газа и нефти. Выходящая на поверхность земли магма называется лавой. Наибольшая "пропускная способность" Земли в извержении лавы наблюдается на границах тектонических плит и там, где земная кора достаточно тонка. Когда лава входит в соприкосновение с водными ресурсами планеты, начинается резкий нагрев воды, что в результате приводит к гейзерным извержениям, формированию горячих озёр и подводных течений. Словом, возникают природные явления, свойства которых можно использовать в качестве практически неиссякаемого источника энергии. Источники геотермальной энергии практически неисчерпаемы. Правда, распространены они не повсеместно, хотя и обнаружены в более чем 60 странах мира. Наибольшее количество действующих наземных вулканов расположено в зоне Тихоокеанского вулканического огненного кольца (328 из 540 известных). Геотермический градиент в скважине, с помощью которой добираются до подземной энергии, повышается на 1 о С каждые 36 метров. Получаемое таким образом тепло поступает на поверхность в виде горячего пара или воды, которые можно использовать напрямую для обогрева зданий или косвенно, для производства электроэнергии. На практике геотермальные источники в различных регионах планеты значительно отличаются друг от друга, из-за чего их приходится классифицировать по десяткам различных характеристик, таким как средняя температура, минерализация, газовый состав, кислотность и пр. В плоскости практического применения для выработки электрической энергии основной классификацией геотермальных источников можно считать деление на три основных типа:
  • Прямой - используется сухой пар;
  • Непрямой - используется водяной пар;
  • Смешанный (бинарный цикл).
В простейших геотермальных электростанциях прямого типа для производства электроэнергии используют пар, который поступает из скважины непосредственно в турбину генератора. Самая первая геотермальная электростанция в мире работала именно по такому принципу. Эксплуатация этой станции началась в итальянском городке Лардерелло (недалеко от Флоренции) ещё в 1911 году. Семью годами ранее, 4 июля 1904 года с помощью геотермального пара здесь был приведен в действие генератор, который смог зажечь четыре электрические лампочки, после чего и было принято решение о строительстве электростанции. Что примечательно, станция в Лардерелло функционирует и по сей день. Одна из самых крупных ныне действующих геотермальных электростанций в мире мощностью 1400 МВт расположена в районе "Гейзерс" в Северной Калифорнии (США), и она также использует сухой пар. Геотермальные электростанции с непрямым типом производства электроэнергии сегодня наиболее распространены. Для их работы используются горячие подземные воды, которые закачиваются при высоком давлении в генераторные установки, установленные на поверхности. В геотермальных электростанциях смешанного типа кроме подземной воды используется дополнительная жидкость (или газ), чья точка кипения ниже, чем у воды. Они пропускаются через теплообменник, где геотермальная вода выпаривает вторую жидкость, а получаемые пары приводят в действие турбины. Такая замкнутая система экологически чиста, поскольку вредные выбросы в атмосферу практически отсутствуют. Кроме того, бинарные станции функционируют при довольно низких температурах источников, по сравнению с другими типами геотермальных станций (100-190 °С). Такая особенность в будущем может сделать этот тип геотермальных электростанций самым популярным, поскольку в большей части геотермальных источников вода имеет температуру ниже 190 °С.

Использование геотермальных источников в мире

Первая геотермальная электростанция в СССР была возведена на Камчатке – это Паужетская ГеоТЭС, начавшая свою работу в 1967 году. Первоначально мощность станции составляла 5 МВт; впоследствии её удалось увеличить до 11 МВт. Потенциал гидротермальных месторождений на Камчатке огромен. Запасы тепла геотермальных вод здесь оцениваются в 5000 МВт. Использование в полной мере геотермального тепла могло бы решить энергетическую проблему Камчатской области, сделать ее независимой от завозного топлива. Самым изученным и наиболее перспективным является Мутновское геотермальное месторождение, расположенное в 90 километрах южнее города Петропавловск-Камчатский. Еще в 1986 году, проведенная Институтом вулканологии РАН оценка показала, что прогнозируемые ресурсы месторождения составляют по тепловому выносу - 312 МВт, а по объемному методу - 450 МВт. Опытно-промышленная Верхне-Мутновская ГеоТЭС мощностью 12 (3x4) МВт функционирует с 1999 года. Установленная мощность на 2004 год - 12 МВт. I очередь Мутновской ГеоТЭС мощностью 50 (2x25) МВт включена в сеть 10 апреля 2003 года; установленная мощность на 2007 год - 50 МВт, планируемая мощность станции - 80 МВт. Действующие геотермальные электростанции обеспечивают до 30% энергопотребления центрального Камчатского энергоузла. Приятно отметить, что тепломеханическое оборудование ГеоТЭС на Мутновском месторождении разработано, создано и поставлено отечественными заводами: турбины принадлежат ОАО "КТЗ", сепараторы - ОАО "ПМЗ", энергетическая арматура - ОАО "ЧЗЭМ" и т.д. Запасами тепла земли богаты Курильские острова. В частности, на острове Итуруп, на Океанском геотермальном месторождении, уже пробурены скважины и строится ГеоТЭС. На южном острове Кунашир имеются запасы геотермального тепла, и их уже используют для получения электроэнергии и теплоснабжения города Южно Курильск. На острове Парамушир, имеющего запасы геотермальной воды температурой от 70 до 95°С, строится ГеоТС мощностью 20 МВт. Существенные запасы геотермального тепла (на границе с Камчатской областью) имеются на Чукотке. Частично они открыты и используется для обогрева находящихся поблизости населенных пунктов. В России использование геотермальной энергии, кроме Камчатки, Курил, Приморья, Прибайкалья и Западно-Сибирского региона, возможно на Северном Кавказе. Здесь изучены геотермальные месторождения с температурой от 70 до 180°С, находящиеся на глубине от 300 до 5000 метров. В Дагестане только в 2000 году добыли свыше 6 млн м 3 геотермальной воды. Всего на Северном Кавказе примерно полмиллиона людей обеспечены геотермальным водоснабжением. На сегодняшний день мировыми лидерами в геотермальной электроэнергетике являются США, Филиппины, Мексика, Индонезия, Италия, Япония, Новая Зеландия и Исландия. Особенно ярким примером использования геотермальной энергии служит последнее государство. Остров Исландия появился на поверхности океана в результате вулканических извержений 17 миллионов лет назад, и теперь его жители пользуются своим привилегированным положением - примерно 90% исландских домов обогревается подземной энергией. Что касается выработки электроэнергии, здесь работают пять ГеоТЭС общей мощностью 420 МВт, использующих горячий пар с глубины от 600 до 1000 метров. Таким образом, с помощью геотермальных источников производится 26,5% всей электроэнергии Исландии.

Топ-15 стран, использующих геотермальную энергию (данные на 2007 г.)

Энергия низкопотенциальная, но перспективная

Геотермальные источники можно поделить на низко-, средне- и высокотемпературные. Первые (с температурой до 150 °С) используются, по большей части, для теплоснабжения горячей водой - ее подводят по трубам к зданиям (жилым и производственным), плавательным бассейнам, теплицам и т.д. Вторые (с температурой свыше 150 °С), содержащие сухой либо влажный пар, годятся для приведения в движение турбин геотермальных электростанций (ГеоТЭС). Существенным минусом "горячих" геотермальных источников является их "избирательная" расположенность в местах тектонической нестабильности, о чем говорилось выше. Если брать Россию, то запасами высокопотенциальной геотермальной энергией можно пользоваться только на Камчатке, Курилах да в районе Кавказских минеральных вод. Но земная "котельная" располагает не только высокопотенциальной, но и низкопотенциальной энергией, источником которой выступает грунт поверхностных слоев земли (глубиной до 400 м) или подземные воды с относительно низкой температурой. Использовать низкопотенциальное тепло можно с помощью тепловых насосов. Тепловой режим грунта земляных поверхностных слоев создается под воздействием радиогенного тепла, идущего из недр земли, а также попадающей на поверхность солнечной радиации. Интенсивность падающей солнечной радиации может колебаться в зависимости от конкретных почвенно-климатических условий в пределах от нескольких десятков сантиметров до полутора метров. Низкопотенциальное тепло эффективно использовать для обогрева зданий, водоснабжения горячей водой, подогрева различных сооружений (например, полей открытых стадионов). В последнее десятилетие значительно выросло число систем, использующих подземные недра для снабжения зданий теплом и холодом. Больше всего таковых систем находится в США. Имеются они также в Австрии, Германии, Швеции, Швейцарии, Канаде. В нашей стране подобных систем насчитывается единицы. В европейских странах тепловые насосы, в основном, отапливают помещения. В США, где системы воздушного отопления совмещены с вентиляцией, воздух не только нагревается, но и охлаждается. Если говорить о России, пример использования низкопотенциального источника тепловой энергии находится в Москве, в микрорайоне Никулино-2. Здесь была построена теплонасосная система для горячего водоснабжения многоэтажного жилого дома. Данный проект реализовали в 1998-2002 годах Министерством обороны РФ совместно с правительством Москвы, Минпромнауки России, НП "АВОК" и ОАО "Инсолар-Инвест" в рамках "Долгосрочной программы энергосбережения в г. Москве". Выделяют два вида систем использования низкопотенциальной тепловой энергии земли: открытые системы и замкнутые системы. Первые используют грунтовые воды, подводимые непосредственно к тепловым насосам, вторые – грунтовый массив. Для открытых систем характерны парные скважины, с помощью которых грунтовые воды не только извлекаются, но затем и возвращаются обратно в водоносные слои. Открытые системы позволяют получить большое количество тепловой энергии с относительно низкими затратами. Однако грунт должен быть водопроницаем, а сами грунтовые воды - обладать пригодным для эксплуатации химическим составом, чтобы избежать коррозии и отложений на стенках труб. Самая большая в мире геотермальная теплонасосная система, использующая энергию грунтовых вод, размещается в американском городе Луисвилл. С ее помощью снабжается теплом и холодом гостинично-офисный комплекс. Мощность системы - примерно 10 МВт. Замкнутые системы делятся на вертикальные и горизонтальные. Вертикальные грунтовые теплообменники используют низкопотенциальную тепловую энергию грунтового массива ниже так называемой "нейтральной зоны" (10-20 метров от уровня земли). Такие системы не требуют участков большой площади, а также не зависят от интенсивности солнечной радиации, падающей на поверхность. Им подходят почти все виды геологических сред, кроме грунтов с низкой теплопроводностью, например, сухого песка или гравия. В вертикальных грунтовых теплообменниках теплоноситель циркулирует по трубам (чаще всего полипропиленовым или полиэтиленовым), уложенным в вертикальных скважинах глубиной от 50 до 200 метров. Обычно используется два типа вертикальных грунтовых теплообменников: U-образный и коаксиальный. Первый представляет собой две параллельные трубы, соединенные в нижней части. В одной скважине располагаются одна или две пары таких труб. Преимущество U-образного типа - сравнительно низкая стоимость изготовления. Второй тип теплообменника (называемый также концентрическим) представляет собой две трубы разного диаметра, одна из которых размещается внутри другой. Системы с вертикальными грунтовыми теплообменниками пригодны для снабжения зданий как теплом, так и холодом. Небольшому строению хватит одного теплообменника, а вот для больших зданий может понадобиться несколько скважин с вертикальными теплообменниками. Как пример последнему служит система тепло- и холодоснабжения американского колледжа "Richard Stockton College", в которой используется рекордное количество скважин – 400 (глубиной 130 метров). В Европе самое большее число скважин (154 скважины глубиной 70 метров) пробурено для системы тепло- и холодоснабжения центрального офиса Германской службы управления воздушным движением. Горизонтальные грунтовые теплообменники создаются обычно неподалеку от здания, на небольшой глубине, но обязательно ниже уровня промерзания грунта в зимний период. В Европе подобные теплообменники представляют собой плотно соединенные (последовательно или параллельно) трубы. Чтобы сэкономить площадь, созданы специальные типы теплообменников, например, в виде спирали. В качестве источника низкопотенциальной тепловой энергии перспективно использовать воды из туннелей и шахт, поскольку температура воды в них имеет постоянную температуру круглый год и легко доступна. Использование подземного тепла, как высокопотенциального, так и низкопотенциального, считается крайне перспективным. Особенно это касается обеспечения зданий теплым и охлажденным воздухом с помощью низкопотенциального тепла. По прогнозам Мирового Энергетического комитета (МИРЭК), к 2020 году развитые страны мира станут достаточно активно осуществлять теплоснабжение теплонасосными системами. И здесь подойдут не только "разгоряченные" земные недра, но также воздух и вода морей и океанов. Например, в Швеции, где близ Стокгольма размещена станция на шести баржах мощностью 320 МВт, используют воду Балтийского моря с температурой +4 °С. В Российской Федерации огромные запасы природного газа, нефти, угля и леса позволяют (до поры до времени) не слишком задумываться об альтернативных источниках энергии. Однако работы по освоению геотермальных источников ведутся на ее территории не первый десяток лет, что свидетельствует о понимании важности вопроса. Ведь речь идет о неисчерпаемых источниках тепла и электричества, которые, рано или поздно, станут важными, и, возможно, основными поставщиками энергии для всего человечества, а не только для отдельно взятых стран.
Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Гречка с фаршем рецепт на сковороде Гречка с фаршем и овощами на сковороде Гречка с фаршем рецепт на сковороде Гречка с фаршем и овощами на сковороде Профессия Проходчик.  Кто такой Проходчик. Описание профессии. Вакансии проходчика для работы вахтой Проходчик профессия Профессия Проходчик. Кто такой Проходчик. Описание профессии. Вакансии проходчика для работы вахтой Проходчик профессия «Из тьмы веков» Идрис Базоркин Из тьмы веков читать «Из тьмы веков» Идрис Базоркин Из тьмы веков читать