Фазовый переход пар жидкость испарение конденсация. Школьная энциклопедия

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Лекция №

ТЕМА : Парообразование и конденсация. Кипение. Зависимость

Температуры кипения жидкости от давления. Точка росы.

План

1. Парообразование и конденсация.

2. Испарение.

3. Насыщенный пар и его свойства.

4. Кипение. Зависимость t кип от давления .

5. Перегретый пар и его применение.

6. Влажность воздуха.

1. XIX в. называют «веком пара», так как в это время широкое распространение получили тепловые машины, рабочим веществом которых был пар. В наше время паровые турбины находят применение на теплоэлектростанциях. Для того, чтобы построить такие машины и повысить их ККД необходимо знать свойства рабочего вещества – пара.

Свойства пара используются в разных приборах. Изучение свойств пара привело к возможности получить сжиженные газы и их широкому применению.

Знания о свойствах паров необходимы и в метеорологии.

Таким образом, изучение данного материала имеет большое практическое значение.

Парообразование и конденсация.

Переход вещества из жидкого состояния в газообразное называется парообразованием , а переход вещества из газообразного состояния в жидкое называется – конденсацией.

Парообразование сопровождается U; конденсация сопровождается U↓

Испарения

Парообразование

происходит в виде кипения

2. Парообразование, которое происходит только со свободной поверхности жидкости, которая является границей с газообразной средой или с вакуумом, называется испарением.

Испарение происходит при любой температуре; со свободной поверхности жидкости отлетают молекулы, кинетическая энергия которых больше потенциальной энергии взаимодействия.

Е к < Е к2 > Е к1

Чтобы выйти из жидкости, молекула должна выполнить работу за счет уменьшения своей Е к . Покинуть жидкость могут лишь молекулы, у которых Е к > А выхода (работа, которая выполняется из преодоления сил притяжения между молекулами). Так как жидкость покидают лишь молекулы с большой Е к , а остаются с малой Е к ↓, то среднее значение энергии Е для молекул, которые остаются уменьшается, то есть жидкость охлаждается . Например : этим объясняется холод при выходе из воды; если дуть на ладонь.

Наряду с этим существуют молекулы, которые возвращаются в жидкость, передавая ей часть своей кинетической энергии – Е к, при этом внутренняя энергия жидкости увеличивается (жидкость нагревается).

ИСПАРЕНИЕ КОНДЕНСАЦИЯ ПРОИСХОДЯТ ОДНОВРЕМЕННО.

Если преобладает испарение – жидкость охлаждается.

Если преобладает конденсация – жидкость нагревается.

Скорость испарения зависит:

1. От рода жидкости (эфир, вода).

2. От площади свободной поверхности.

3. С Т скорость испарения возрастает.

4. Чем меньше плотность пара жидкости над ее поверхностью, тем больше скорость испарения.

3. Пары, которые насыщают и не насыщают пространство.

А). В открытом сосуде преобладает процесс испарения,

Так как пар относится движением воздуха.

Б). В герметично закрытом сосуде количество

Молекул, которые покидают жидкость за единицу

Времени = количеству молекул, которые

Возвращаются в жидкость за то же самое время

(конденсация), то есть наступает динамическое

Равновесие. при Т = const

Пар, который находится в состоянии подвижного (динамического) равновесия со своей жидкостью, называется паром, насыщающим пространство, или насыщенным паром.

Именно такой пар содержится над поверхностью жидкости в закрытом сосуде. Давление насыщенного пара зависит только от температуры.

Пар, который находится над поверхностью жидкости, когда процесс испарения преобладает над процессом конденсации, и пар при отсутствии жидкости называется ненасыщенным паром.

Свойства паров, насыщающих пространство : Е ПОС , р пара

1. Давление и плотность насыщенного пара зависит от его Т.

2. Не подчиняется закону Шарля (так как m≠const, V = const) и масса насыщенного пара при изохоричном процессе изменяются.

3. Не выполняется закон Бойля - Мариотта (Т = const), при Т = cons р нас пара не зависит от объема, плотность насыщенного пара не изменяется (так как масса газа насыщенного пара изменяется).

Свойства паров, ненасыщающих пространство .

К ненасыщенному пару можно применить законы идеального газа лишь в тех случаях, когда пар далек от насыщенности.

Насыщенный пар возможно превратить в ненасыщенный – изохоричным нагревом (изотермическое расшрение).

Ненасыщенный → насыщенный – путем изохоричного охлаждения (изотермическое сжатие).

Опыты показывают, если пар не сталкивается с жидкостью, его можно охладить ниже температуры, при которой он становится насыщенным, а жидкость при этом так и не образуется. Такой пар называется перенасыщенным. Объясняется это тем, что для образования пара в жидкости необходимы центры конденсации. Обычно, то пылинки или «+» ионы, которые притягивают к себе молекулы пара, что ведет к образованию маленьких капелек.

4. ПРОЦЕСС КИПЕНИЯ.

Парообразование, которое происходит в объеме всей жидкости при постоянной температуре, называется кипением.

При кипении во всем объеме жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность. Температура остается неизменной (Т=const).

Условие кипения – кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается с давлением в жидкости.

В жидкости всегда существует растворимый газ, который выделяется на дне и стенках сосуда.

С повышением температуры, давление насыщенного пара возрастает, пузырек растет в объеме и под действием F арх всплывает, если t поверхностного слоя жидкости ниже, в пузырьке газ конденсируется, давление падает, пузырек захлопывается (микровзрыв). Этим поясняется шум воды, перед тем как она начинает закипать.

Когда температура жидкости сравнивается, пузырек всплывает на поверхность.

ЗАВИСИМОСТЬ Т кип ОТ ДАВЛЕНИЯ:

1. Чем выше внешнее давление, тем выше Т кипения.

Например. Паровой котел: р = 1,6 · 10 6 Па, а вода не кипит даже при 200°С (автоклав).

2. Уменьшение внешнего давления ведет к снижению Т кип .

Например. Горы: h = 7134 м; р = 4·10 4 Па; t воды = 70°С

3. У каждой жидкости своя Т кип , которая зависит от давления насыщенного пара. Чем выше давление насыщенного пара, тем ниже Т кип соответствующей жидкости.

Температура кипения жидкости при нормальном атмосферном давлении наз. точкой кипения (норм условия : t = 0°С, р = 760 мм рт ст. = 101300 Па, М возд = 0,029 кг/моль).

Q жид = сm (t кип – t 1 ); Q пар = m·r ; Q = Q жид + Q п = сm (t кип – t 1 ) + m·r

R - Количество теплоты, которая необходима для превращения 1кг жидкости в пар (или пара в жидкость), при постоянной температуре, которая равна температуре кипения называется удельной теплотой парообразования. (Q пар = m·r)

r – Зависит : 1. От рода вещества.

2. От внешних условий.

∑ отдан = ∑ получ уравнение теплового баланса

Перегретый пар и его применение.

Пар, который получают „в чане”, потом нагревают до высокой температуры, а потом уже направляют в паровую турбину, называют сухим или перегретым. Так как вместе с температурой увеличивается давление пара, то сильно перегретый пар называют паром высокого давления.

После того, как пар выполнит работу в турбине, он еще имеет высокую температуру и большой запас энергии. Поэтому с (ТЭЦ) отработанный пар передается на предприятия и жилые дома для отопления.

Критическое состояние вещества.

Чтобы перевести пар в жидкость, необходимо повысить давление и снизить его температуру.

грани не видно

Так как ρ 1 > ρ 2

При увеличении температуры плотность уменьшается для жидкости, а плотность пара возрастает, и различие между ними становится менее заметным. Если температура будет очень высокой, грань исчезнет.

Критической температурой (t кр ) вещества называется такая температура, при которой плотность жидкости и плотность насыщенного пара становятся одинаковыми.

Давление насыщенного пара какого-либо вещества при его t кр наз. критическим давлением.

При критической температуре свойства жидкости и насыщенного пара становятся неразличимыми, это означает, что при t кр вещество может существовать только в одном состоянии, которое называют газообразным и в этом случае никаким увеличением давления превратить его в жидкость невозможно. Если вещество находится при t кр и р кр , то ее состояние называют критическим состоянием.

СЖАТИЕ ГАЗОВ И ИХ ПРИМЕНЕНИЕ В ТЕХНИКЕ.

Газ возможно перевести в жидкое состояние, если его температура ниже критической (Остан 1908- гелий).

В машинах для сжатия газов используются охлажденные газы в процессе их адиабатического расширения. Предварительно газ сильно сжимают компрессором, теплота отводится. В процессе адиабатического расширения сам газ выполняет работу и еще больше охлаждается. Превращается в жидкость. Сжатые газы сохраняют в сосудах Дьюара. Это сосуд с двойными стенками, между которыми – вакуум, для уменьшения теплопроводности стенки покрыты ртутной амальгамой. Жидкие газы широко применяют в промышленности и научных опытах.

Свойства вещества изменяются при низких температурах:

Свинец становится упругим;

Резина – хрупкой.

Изучение свойств вещества при низких температурах привело к открытию сверхпроводимости.

ВЛАЖНОСТЬ ВОЗДУХА.

В воздухе всегда содержится определенное количество водяного пара. Если водяного пара много, мы говорим, что воздух влажный, если мало – сухой.

Величина, характеризующая содержание водяных паров в разных частях атмосферы Земли называется влажностью воздуха .

Давление, которое оказывал бы водяной пар, если бы остальные газы отсутствовали, наз. парциальным давлением водяного пара.

Для количественной оценки влажности воздуха используют абсолютную и относительную влажность воздуха.

Абсолютной влажностью воздуха называется плотность водяного пара или давление пара, который находится в воздухе /1м/при данной температуре.

Относительной влажностью воздуха называется отношение парциального давления водяного пара, который содержится в воздухе, к давлению насыщенного водяного пара при той же температуре.

φ - Относительная влажность воздуха показывает, сколько % составляет абсолютная влажность ρ а от плотности водяного пара ρ н , насыщенного воздуха при данной температуре.

ρ а - плотность водяного пара

ρ н - плотность насыщенного пара

Температура, при которой воздух в процессе своего охлаждения, становится насыщенным водяным паром, называют точкой росы .

Приборы для определения влажности воздуха: гигрометр и психрометр .

Вопросы для самоконтроля:

1. Дайте определение процессов парообразования и конденсации?

2. Какими путями происходит процесс парообразования?

3. Поясните принцип охлаждения и нагрева жидкости.

4. От чего зависит скорость испарения жидкости?

5. Что такое динамическое равновесие?

6. Кипение – это ….?

7. При каком условии какая-либо жидкость начинает кипеть?

8. Как зависит температура кипения вещества от давления?

10. Влажность воздуха - это …

12. Дайте определение точки росы.

Литература

1. Дмитрієва В.Ф. Фізика: Навч. посіб..- К.: Техніка, 2008.-648 с.: іл..(§63 -§67, §69-70)

2. Владкова Р.А., Добронравов В.Є., Збірник задач і питань з фізики: Навч. посіб.- М.: Наука, 1988.-384 с.

Вопросы для закрепления темы.(ответить усно)

1. Почему мокрое белье, скошенная трава высыхают быстрее в ветреную погоду

2. Почему температура воды в открытых водоемах летом всегда ниже

Температуры окружающей среды?

3. Почему человек, который вышел из воды, ощущает холод, и в ветреную погоду

Это ощущение сильнее?

4. Чем объяснить, что в резиновой одежде тяжело переносить жару?

Такая одежда не дает влаге, которая образовалась под ней, испаряться в

Окружающий воздух, организм человека перегревается.

5. Может ли испаряться твердое тело?

6. Почему вода тушит огонь? Что быстрее потушит пламя – кипяток или

Холодная вода?

7. Почему барометр «падает» перед дождем

8. Как изменяется абсолютная и относительная влажность воздуха при его

1. Испарение и конденсация

Процесс перехода вещества из жидкого состояния в газообразное состояние называется парообразованием, обратный процесс превращения вещества из газообразного состояния в жидкое называют конденсацией. Существуют два вида парообразования - испарение и кипение. Рассмотрим сначала испарение жидкости. Испарением называют процесс парообразования, происходящий с открытой поверхности жидкости при любой температуре. С точки зрения молекулярно-кинетической теории эти процессы объясняются следующим образом. Молекулы жидкости, участвуя в тепловом движении, непрерывно сталкиваются между собой. Это приводит к тому, что некоторые из них приобретают кинетическую энергию, достаточную для преодоления молекулярного притяжения. Такие молекулы, находясь у поверхности жидкости, вылетают из неё, образуя над жидкостью пар (газ). Молекулы пар~ двигаясь хаотически, ударяются о поверхность жидкости. При этом часть из них может перейти в жидкость. Эти два процесса вылета молекул жидкости и ах обратное возвращение в жидкость происходят одновременно. Если число вылетающих молекул больше числа возвращающихся, то происходит уменьшение массы жидкости, т.е. жидкость испаряется, если же наоборот, то количество жидкости увеличивается, т.е. наблюдается конденсация пара. Возможен случай, когда массы жидкости и пара, нахо­дящегося над ней, не меняются. Это возможно, когда число молекул, по­кидающих жидкость, равно числу молекул, возвращающихся в неё. Такое состояние называется динамическим равновесием

А пар

Находящийся в динамическом равновесии со своей жидкостью, называют насыщенным

. Если же между паром и жидкостью нет динамического равновесия, то он называется ненасыщенным. Очевидно, что насыщенный пар при данной температуре имеет определённую плотность, называемую равновесной.

Это обусловливает неиз­менность равновесной плотности, а следова­тельно, и давления насы­щенного пара от его объ­ёма при неизменной тем­пературе, поскольку уменьшение или увели­чение объёма этого пара приводит к конденсации пара или к испарению жидкости соответственно. Изотерма насыщенного пара при некоторой температуре в координатной плоскости Р, V представляет собой прямую, параллельную оси V. С повышением температуры термодина­мической системы жидкость - насыщенный пар число молекул, поки­дающих жидкость за некоторое время, превышает количество молекул, возвращающихся из пара в жидкость. Это продолжается до тех пор, пока возрастание плотности пара не приводит к установлению динамического равновесия при более высокой температуре. При этом увеличивается и давление насыщенных паров. Таким образом, давление насыщенных паров зависит только от температуры. Столь быстрое возрастание давления насыщенного пара обусловлено тем, что с повышением температуры происходит рост не только кинетической энергии поступательного движения молекул, но и их концентрации, т.е. числа молекул в единице объема

При испарении жидкость покидают наиболее быстрые молекулы, вследствие чего средняя кинетическая энергия поступательного движения оставшихся молекул уменьшается, а следовательно, и температура жидко­сти понижается (см. §24). Поэтому, чтобы температура испаряющейся жидкости оставалась постоянной, к ней надо непрерывно подводить опре­делённое количество теплоты.

Количество теплоты, которое необходимо сообщить единице массы жидкости, для превращения её в пар при неизменной температуре называется удельной теплотой парообразования.

Удельная теплота парообразования зависит от температуры жидкости, уменьшаясь с её повышением. При конденсации количество теплоты, затраченное на испарение жидкости, выделяется. Конденсация – процесс превращения из газообразного состояния в жидкое.

2. Влажность воздуха.

В атмосфере всегда содержится некоторое количество водяных паров. Степень влажности является одной из существенных характеристик погоды и климата и имеет во многих случаях практическое значение. Так, хранение различных материалов (в том числе цемента, гипса и других строительных материалов), сырья, продуктов, оборудования и т.п. должно происходить при определенной влажности. К помещениям, в зависимости от их назначения, также предъявляются соответствующие требования по влажности.

Для характеристики влажности используется ряд величин. Абсолют­ной влажностью р называется масса водяного пара, содержащегося в единице объёма воздуха. Обычно она измеряется в граммах на кубический метр (г/м3). Абсолютная влажность связана с парциальным давлением Р водяного пара уравнением Менделеева – Клайпейрона , где V - объём, занимаемый паром, m, Т и m - масса, абсолютная температура и молярная масса водяного пapa, R - универсальная газовая постоянная (см. (25.5)). Парциальным давлением называется давление, которое оказывает водяной пар без учёта действия молекул воздуха другого сорта. Отсюда , так как р = m/V- плотность водяного пара.

Парообразование - процесс перехода вещества из жидкого состояния в газообразное.

  • Парообразование может происходить непосредственно из твердого состояния - это называется возгонка (или сублимация ).

Совокупность молекул, вылетевших из вещества, называется паром этого вещества.

При парообразовании увеличиваются средние расстояния между молекулами. В результате потенциальная энергия взаимодействия частиц увеличивается (численное значение ее уменьшается, но она отрицательна). Таким образом, процесс парообразования связан с увеличением внутренней энергии вещества.

Переход из жидкого состояния в газообразное возможен двумя различными процессами: испарением и кипением.

Испарение - это парообразование, происходящее со свободной поверхности жидкости при любой температуре.

Свойства испарения

Экспериментально установлены следующие cвойства испарения:

  1. При одинаковых условиях различные вещества испаряются с различной скоростью (скорость испарения определяется числом молекул, переходящих в пар с поверхности вещества за 1 с).
  2. Скорость испарения тем больше:
    1. чем больше площадь свободной поверхности жидкости;
    2. чем меньше плотность паров над поверхностью жидкости. Скорость увеличивается при движении окружающего воздуха (ветер);
    3. чем больше температура жидкости.
  3. При испарении температура тела понижается.

Механизм испарения можно объяснить с точки зрения MKT: молекулы, находящиеся на поверхности, удерживаются силами притяжения со стороны других молекул вещества. Молекула может вылететь за пределы жидкости лишь тогда, когда ее кинетическая энергия превышает значение той работы, которую необходимо совершить, чтобы преодолеть силы молекулярного притяжения (работа выхода ). Поэтому покинуть вещество могут только быстрые молекулы. В результате средняя кинетическая энергия оставшихся молекул уменьшается, а температура жидкости понижается. Для того, чтобы поддерживать температуры испаряющейся жидкости неизменной, к ней необходимо подводить некоторое количество теплоты.

Молекулы пара хаотически движутся. Поэтому некоторые из них могут снова возвратиться в жидкость. Процесс перехода вещества из газообразного состояния в жидкое называется конденсацией .

Число возвратившихся в жидкость за определенный промежуток времени молекул тем больше, чем больше концентрация молекул пара, а следовательно, чем больше давление пара над жидкостью. Конденсация пара сопровождается нагреванием жидкости. При конденсации выделяется такое же количество теплоты, которое было затрачено при испарении.

Кипение жидкостей

Кипение - это парообразование, происходящее одновременно и с поверхности, и по всему объему жидкости. Оно состоит в том, что всплывают и лопаются многочисленные пузырьки, вызывая характерное бурление.

Как показывает опыт, кипение жидкости при заданном внешнем давлении начинается при вполне определенной и не изменяющейся в процессе кипения температуре и может происходить только при подводе энергии извне в результате теплообмена (рис. 3):

\(~Q = L \cdot m,\)

где L - удельная теплота парообразования при температуре кипения.

Механизм кипения: в жидкости всегда имеется растворенный газ, степень растворения которого понижается с ростом температуры. Кроме того, на стенках сосуда имеется адсорбированный газ. При нагревании жидкости снизу (рис. 4) газ начинает выделяться в виде пузырьков у стенок сосуда. В эти пузырьки происходит испарение жидкости. Поэтому в них, кроме воздуха, находится насыщенный пар, давление которого с ростом температуры быстро увеличивается, и пузырьки растут в объеме, а следовательно, увеличиваются действующие на них силы Архимеда. Когда выталкивающая сила станет больше силы тяжести пузырька, он начинает всплывать. Но пока жидкость не будет равномерно прогрета, по мере всплытия объем пузырька уменьшается (давление насыщенного пара уменьшается с понижением температуры) и, не достигнув свободной поверхности, пузырьки исчезают (захлопываются) (рис. 4, а), вот почему мы слышим характерный шум перед закипанием. Когда температура жидкости выравняется, объем пузырька при подъеме будет возрастать, так как давление насыщенного пара не изменяется, а внешнее давление на пузырек, представляющее собой сумму гидростатического давления жидкости, находящейся над пузырьком, и атмосферного, уменьшается. Пузырек достигает свободной поверхности жидкости, лопается, и насыщенный пар выходит наружу (рис. 4, б) - жидкость закипает. Давление насыщенного пара при этом в пузырьках практически равно внешнему давлению.

Температура, при которой давление насыщенного пара жидкости равно внешнему давлению на ее свободную поверхность, называется температурой кипения жидкости.

Так как давление насыщенного пара увеличивается с ростом температуры, а при кипении оно должно быть равно внешнему, то при увеличении внешнего давления температура кипения увеличивается.

Температура кипения зависит также от наличия примесей, обычно увеличиваясь с ростом концентрации примесей.

Если предварительно освободить жидкость от растворенного в ней газа, то ее можно перегреть, т.е. нагреть выше температуры кипения. Это неустойчивое состояние жидкости. Достаточно небольших сотрясений и жидкость закипает, а ее температура сразу понижается до температуры кипения.

См. также

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 197-203.
  2. Жилко В.В. Физика: Учеб. пособие для 11-го кл. общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, А.В.Лавриненко, Л.Г. Маркович. - Мн.: Нар. асвета, 2002. - С. 194-203.

>>Физика: Испарение и конденсация

При парообразовании вещество переходит из жидкого состояния в газообразное (пар). Существуют два вида парообразования: испарение и кипение .

Испарение - это парообразование, происходящее со свободной поверхности жидкости.

Как происходит испарение? Мы знаем, что молекулы любой жидкости находятся в непрерывном и беспорядочном движении, причем одни из них движутся быстрее, другие - медленнее. Вылететь наружу им мешают силы притяжения друг к другу. Если, однако, у поверхности жидкости окажется молекула с достаточно большой кинетической энергией, то она сможет преодолеть силы межмолекулярного притяжения и вылетит из жидкости. То же самое повторится с другой быстрой молекулой , со второй, третьей и т. д Вылетая наружу, эти молекулы образуют над жидкостью пар. Образование этого пара и есть испарение.

Поскольку при испарении из жидкости вылетают наиболее быстрые молекулы, средняя кинетическая энергия оставшихся в жидкости молекул становится все меньше и меньше. В результате этого температура испаряющейся жидкости понижается: жидкость охлаждается . Именно поэтому, в частности, человек в мокрой одежде чувствует себя холоднее, чем в сухой (особенно при ветре).

В то же время всем известно, что если налить воду в стакан и оставить на столе, то, несмотря на испарение, она не будет непрерывно охлаждаться, становясь все более и более холодной, пока не замерзнет. Что же этому мешает? Ответ очень простой:теплообмен воды с окружающим стакан теплым воздухом.

Охлаждение жидкости при испарении более заметно в том случае, когда испарение происходит достаточно быстро (так что жидкость не успевает восстановить свою температуру благодаря теплообмену с окружающей средой). Быстро испаряются летучие жидкости, у которых силы межмолекулярного притяжения малы, например эфир, спирт, бензин. Если капнуть такой жидкостью на руку, мы ощутим холод. Испаряясь с поверхности руки, такая жидкость будет охлаждаться и отбирать от нее некоторое количество теплоты.

Быстроиспаряющиеся вещества находят широкое применение в технике. Например, в космической технике такими веществами покрывают спускаемые аппараты. При прохождении через атмосферу планеты корпус аппарата в результате трения нагревается, и покрывающее его вещество начинает испаряться. Испаряясь, оно охлаждает космический аппарат, спасая его тем самым от перегрева.

Охлаждение воды при ее испарении используется также в приборах, служащих для измерения влажности воздуха,- психрометрах (от греческого "психрос" - холодный). Психрометр (рис. 81) состоит из двух термометров. Один из них (сухой) показывает температуру воздуха , а другой (резервуар которого обвязан батистом, опущенным в воду) - более низкую температуру, обусловленную интенсивностью испарения свлажного батиста. Чем суше воздух, влажность которого измеряется, тем сильнее испарение и потому тем ниже показания смоченного термометра. И наоборот, чем больше влажность воздуха, тем менее интенсивно идет испарение и потому тем более высокую температуру показывает этот термометр. На основе показаний сухого и увлажненного термометров с помощью специальной (психрометрической) таблицы определяют влажность воздуха, выраженную в процентах. Наибольшая влажность составляет 100% (при такой влажности воздуха на предметах появляется роса). Для человека наиболее благоприятной считается влажность в пределах от 40 до 60%.

С помощью простых опытов легко установить, что скорость испарения увеличивается с ростом температуры жидкости, а также при увеличении площади ее свободной поверхности и при наличии ветра.

Почему при наличии ветра жидкость испаряется быстрее? Дело в том, что одновременно с испарением на поверхности жидкости происходит и обратный процесс - конденсация . Конденсация происходит из-за того, что часть молекул пара, беспорядочно перемещаясь над жидкостью, снова возвращается в нее. Ветер же уносит вылетевшие из жидкости молекулы и не дает им возвращаться назад.

Конденсация может происходить и тогда, когда пар не соприкасается с жидкостью. Именно конденсацией, например, объясняется образование облаков: молекулы водяного пара, поднимающегося над землей, в более холодных слоях атмосферы группируются в мельчайшие капельки воды, скопления которых и представляют собой облака. Следствием конденсации водяного пара в атмосфере являются также дождь и роса.

При испарении жидкость охлаждается и, став более холодной, чем окружающая среда, начинает поглощать ее энергию. При конденсации же, наоборот, происходит выделение некоторого количества теплоты в окружающую среду, и ее температура несколько повышается.

??? 1. Какие два вида парообразования существуют в природе? 2. Что такое испарение ? 3. От чего зависит скорость испарения жидкости? 4. Почему при испарении температура жидкости понижается? 5. Каким образом удается предотвратить спускаемые космические аппараты от перегрева во время прохождения через атмосферу планеты? 6. Что такое конденсация? 7. Какие явления объясняются конденсацией пара? 8. С помощью какого прибора измеряют влажность воздуха? Как он устроен?

Эксперементальные задания . 1. В два одинаковых блюдца налейте по одинаковому количеству воды (например, по три столовые ложки). Одно блюдце поставьте в теплое место, а другое - в холодное. Измерьте время, за которое испарится вода в том и другом блюдцах. Объясните разницу в скорости испарения. 2. Нанесите пипеткой на лист бумаги по капле воды и спирта . Измерьте время, необходимое для их испарения. У какой из этих жидкостей силы притяжения между молекулами меньше? 3. Налейте одинаковое количество воды в стакан и блюдце. Измерьте время, за которое она в них испарится. Объясните разницу в скорости ее испарения.

С.В. Громов, Н.А. Родина, Физика 8 класс

Отослано читателями из интернет-сайтов

Sub>Календарно-тематическое планирование физики, тестирование онлайн , задание школьнику 8 класса, курсы учителю физики 8 класса, рефераты согласно школьной программы, готовые домашние задания

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки Подробности Категория: Молекулярно-кинетическая теория Опубликовано 09.11.2014 21:08 Просмотров: 13006

В жидком состоянии вещество может существовать в определённом интервале температур. При температуре, меньшей нижнего значения этого интервала, жидкость превращается в твёрдое вещество. А если значение температуры превысит верхнюю границу интервала, жидкость переходит в газообразное состояние.

Всё это мы можем наблюдать на примере воды. В жидком состоянии мы видим её в реках, озёрах, морях, океанах, водопроводном кране. Твёрдое состояние воды - лёд. В него она превращается, когда при нормальном атмосферном давлении её температура снижается до 0 о С. А при повышении температуры до 100 о С вода закипает и превращается в пар, который является её газообразным состоянием.

Процесс превращения вещества в пар называют парообразованием. Обратный процесс перехода из пара в жидкость - конденсация .

Парообразование происходит в двух случаях: при испарении и при кипении.

Испарение

Испарением называют фазовый процесс перехода вещества из жидкого состояния в газообразное или парообразное, происходящий на поверхности жидкости .

Как и при плавлении, при испарении веществом поглощается теплота. Она затрачивается на преодоление сил сцепления частиц (молекул или атомов) жидкости. Кинетическая энергия молекул, обладающих самой высокой скоростью, превышает их потенциальную энергию взаимодействия с другими молекулами жидкости. Благодаря этому они преодолевают притяжение соседних частиц и вылетают с поверхности жидкости. Средняя энергия оставшихся частиц становится меньше, и жидкость постепенно остывает, если её не подогревать извне.

Так как частицы находятся в движении при любой температуре, то и испарение также происходит при любой температуре . Мы знаем, что лужи после дождя высыхают даже в холодную погоду.

Но скорость испарения зависит от многих факторов. Один из важнейших - температура вещества . Чем она выше, тем больше скорость движения частиц и их энергия, и тем большее их количество покидает жидкость в единицу времени.

Наполним одинаковым количеством воды 2 стакана. Один поставим на солнцепёк, а другой оставим в тени. Через некоторое время увидим, что воды в первом стакане стало меньше, чем во втором. Её нагрели солнечные лучи, и она испарилась быстрее. Лужи после дождя летом также высыхают гораздо быстрее, чем весной или осенью. В сильную жару происходит быстрое испарение воды с поверхностей водоёмов. Высыхают пруды, озёра, пересыхают русла неглубоких рек. Чем выше температура окружающей среды, тем выше скорость испарения.

При одинаковом объёме жидкость, находящаяся в широкой тарелке, испарится гораздо быстрее жидкости, налитой в стакан. Это означает, что скорость испарения зависит от площади поверхности испарения . Чем больше эта площадь, тем большее количество молекул вылетает из жидкости в единицу времени.

При одинаковых внешних условиях скорость испарения зависит от рода вещества . Заполним стеклянные колбы одинаковым объёмом воды и спирта. Через некоторое время увидим, что спирта осталось меньше, чем воды. Он испаряется с большей скоростью. Так происходит, потому что молекулы спирта слабее взаимодействуют друг с другом, чем молекулы воды.

Влияет на скорость испарения и наличие ветра . Мы знаем, что вещи после стирки гораздо быстрее высыхают, когда их обдувает ветер. Струя горячего воздуха в фене способна быстро высушить наши волосы.

Ветер уносит молекулы, вылетевшие из жидкости, и обратно они уже не возвращаются. Их место занимают новые молекулы, покидающие жидкость. Поэтому в самой жидкости их становится меньше. Следовательно, она испаряется быстрее.

Сублимация

Испарение происходит и в твёрдых телах. Мы видим, как постепенно высыхает на морозе замёрзшее, покрытое льдом бельё. Лёд превращается в пар. Мы ощущаем резкий запах, образующийся при испарении твёрдого вещества нафталина.

Некоторые вещества вообще не имеют жидкой фазы. К примеру, элементарный иод I 2 - простое вещество, представляющее собой кристаллы чёрно-серого цвета с фиолетовым металлическим блеском, при нормальных условиях сразу же превращается в газообразный иод - фиолетовые пары с резким запахом. Тот жидкий йод, который мы покупаем в аптеках, - это не жидкое его состояние, а раствор йода в спирте.

Процесс перехода твёрдых тел в газообразное состояние, минуя жидкую стадию, называют сублимацией, или возгонкой .

Кипение

Кипение - это тоже процесс перехода жидкости в пар. Но парообразование при кипении происходит не только на поверхности жидкости, но и по всему её объёму. Причём процесс этот проходит гораздо интенсивнее, чем при испарении.

Поставим на огонь чайник с водой. Так как в воде всегда есть растворённый в ней воздух, то при нагревании на дне чайника и на его стенках появляются пузырьки. Эти пузырьки содержат воздух и насыщенный водяной пар. Сначала они появляются на стенках чайника. Количество пара в них увеличивается, увеличиваются в размерах и они сами. Затем под воздействием выталкивающей силы Архимеда они будут отрываться от стенок, подниматься вверх и лопаться на поверхности воды. Когда температура воды достигнет 100 о С, пузырьки будут образовываться уже по всему объёму воды.

Испарение происходит при любой температуре, а кипение - только при определённой температуре, которая называется температурой кипения .

Каждое вещество имеет свою температуру кипения. Она зависит от величины давления.

При нормальном атмосферном давлении вода закипает при температуре 100 о С, спирт - при 78 о С, железо - при 2750 о С. А температура кипения кислорода - минус 183 о С.

При уменьшении давления температура кипения снижается. В горах, где атмосферное давление ниже, вода закипает при температуре менее 100 о С. И чем выше над уровнем моря, тем меньшей будет температура кипения. А в кастрюле-скороварке, где создаётся повышенное давление, вода закипает при температуре выше 100 о С.

Насыщенный и ненасыщенный пар

Если вещество может одновременно существовать в жидкой (или твёрдой) фазе и газообразной, то его газообразное состояние называют паром . Пар образуют молекулы, вылетевшие при испарении из жидкости или твёрдого вещества.

Нальём жидкость в сосуд и плотно закроем его крышкой. Через некоторое время количество жидкости уменьшится из-за её испарения. Молекулы, покидающие жидкость, будут концентрироваться над её поверхностью в виде пара. Но когда плотность пара станет довольно высокой, некоторые из них начнут снова возвращаться в жидкость. И таких молекул будет всё больше и больше. Наконец, настанет такой момент, когда число молекул, вылетающих из жидкости, и число молекул, возвращающихся в неё, сравняется. В этом случае говорят, что жидкость находится в динамическом равновесии со своим паром . А такой пар называется насыщенным .

Если при парообразовании из жидкости вылетает больше молекул, чем возвращается, то такой пар будет ненасыщенным . Ненасыщенный пар образуется, когда испаряющаяся жидкость находится в открытом сосуде. Покидающие её молекулы рассеиваются в пространстве. Возвращаются в жидкость далеко не все из них.

Конденсация пара

Обратный переход вещества из газообразного состояния в жидкое называют конденсацией. При конденсации часть молекул пара возвращается в жидкость.

Пар начинает превращаться в жидкость (конденсироваться) при определённом сочетании температуры и давления. Такое сочетание называется критической точкой . Максимальная температура, ниже которой начинается конденсация, называется критической температурой. При температуре выше критической газ никогда не превратится в жидкость.

В критической точке граница раздела фазовых состояний жидкость-пар размывается. Исчезает поверхностное натяжение жидкости, выравниваются плотности жидкости и её насыщенного пара.

При динамическом равновесии, когда число молекул, покидающих жидкость и возвращающихся в неё равно, процессы испарения и конденсации уравновешены.

При испарении воды её молекулы образуют водяной пар , который смешивается с воздухом или другим газом. Температура, при которой такой пар в воздухе становится насыщенным, начинает конденсироваться при охлаждении и превращается в капельки воды, называется точкой росы .

Когда в воздухе находится большое количество водяного пара, говорят, что его влажность повышена.

В природе испарение и конденсацию мы наблюдаем очень часто. Утренний туман, облака, дождь - всё это результат этих явлений. С земной поверхности при нагревании испаряется влага. Молекулы образовавшегося пара поднимаются вверх. Встречая на своём пути прохладные листики или травинки, пар конденсируется на них в виде капелек росы. Чуть выше, в приземных слоях, он становится туманом. А высоко в атмосфере при низкой температуре остывший пар превращается в облака, состоящие из капелек воды или кристалликов льда. Впоследствии из этих облаков на землю прольётся дождь или выпадет град.

Но капельки воды при конденсации образуются лишь в том случае, когда в воздухе находятся мельчайшие твёрдые или жидкие частицы, которые называют ядрами конденсации . Ими могут быть продукты горения, распыления, частицы пыли, морской соли над океаном, частицы, образовавшиеся в результате химических реакций в атмосфере и др.

Десублимация

Иногда вещество может перейти из газообразного состояния сразу в твёрдое, минуя жидкую стадию. Такой процесс называется десублимацией .

Ледяные узоры, которые появляются на стёклах в мороз, и есть пример десублимации. При заморозках почва покрывается инеем - тонкими кристалликами льда, в которые превратились водяные пары из воздуха.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Гречка с фаршем рецепт на сковороде Гречка с фаршем и овощами на сковороде Гречка с фаршем рецепт на сковороде Гречка с фаршем и овощами на сковороде Профессия Проходчик.  Кто такой Проходчик. Описание профессии. Вакансии проходчика для работы вахтой Проходчик профессия Профессия Проходчик. Кто такой Проходчик. Описание профессии. Вакансии проходчика для работы вахтой Проходчик профессия «Из тьмы веков» Идрис Базоркин Из тьмы веков читать «Из тьмы веков» Идрис Базоркин Из тьмы веков читать